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1 INTRODUCTION

EPA is undertaking an effort to develop a new set of modeling tools for the estimation of
emissions produced by on-road and off-road mobile sources. The product of this effort will be
the Multi-scale mOtor Vehicle & equipment Emission System, referred to as MOVES. The
design of MOVES is guided by the following four considerations:

1) the model should encompass all pollutants (e.g., HC, CO, NOy, particulate matter, air
toxics, and greenhouse gases) and all mobile sources at the levels of resolution needed for
the diverse applications of the system,

2) the model should be devel oped according to principles of sound science;

3) the software design of the model should be efficient and flexible; and

4) the model should be implemented in a coordinated, clear, and consistent manner.

A critical element of MOVES is the use of data gathered using on-board emissions measurement
devices. To explorethisissue, in Fall 2001 EPA issued an on-board emission analysis
“shootout” contract in order to solicit several approaches for incorporating on-board emissions
into moves. Three shootout contracts were issued to three organizations that worked
independently on the same general statement of work. These organizations were NCSU,
University of Californiaat Riverside (UCR), and Environ. Each contractor had the flexibility to
choose any approach they preferred. NCSU pursued a modal “binning” approach in which
operational bins were defined based on speed, acceleration, and power demand, and refined the
estimates within each modal bin using regression analysis. UCR pursued a database approach,
deriving separate emissions for macroscale, mesoscale and microscale based on a database
lookup of individual vehicle and trip results. Environ based their approach on a calculation of
vehicle specific power (power per unit mass, or vehicle specific power - VSP), aggregating
results over “microtrips’ (20 or more seconds, defined by endpoints of stable operation). EPA
also developed a conceptual approach based upon binning of data with respect to VSP bins.

The shootout results from NCSU, UCR, Environ, and EPA, revealed severa promising
approaches for using on-board data in the devel opment of MOV ES exhaust emission rates. In
particular, the development of modal emission rates using a*“binning” approach was successfully
demonstrated by NCSU and EPA in the shootout analysis. NCSU directly tackled the time series
nature of the on-board data and illustrated methods for dealing with the data to reduce the
influence of the time series. The work by Environ illustrated potential benefits to averaging or
smoothing the data. Asaresult of thiswork, the proposed design of MOVES s predicated on
emission rates defined by vehicle and modal operation “bins,” and the development of emission
rates for these binsin MOVES is the ultimate purpose of the methodology that will be developed
in this project.

The philosophy for MOV ES isthat it should be as directly data-driven as possible. The
advantages of a data driven methodology are manifold and include the following:

¢ Emission rates can be developed from raw data
e Emissions estimates can be devel oped based upon summaries of actual data within given
bins



¢ Emissions estimates from multiple bins can be weighted to represent any combination of
trip and vehicle characteristics.

e Inter-vehicle variability and fleet average uncertainty can be easily estimated based upon
appropriate averaging times

e Similar conceptual approaches can be used for different types of vehicles (e.g., on-road
gasoline and diesel, nonroad gasoline and diesel)

e Similar conceptual approaches can be used for different pollutants (i.e. HC, CO, NOy,
particulate matter, air toxics, and greenhouse gases)

e The development of bins can be based upon empirical evidence regarding combinations
of factors that have the most influence on aggregate emissions

¢ A modal/binning approach can easily support meso-scale and macro-scale analysis, and
can also support micro-scale analysis depending on how the approach is actually
implemented.

e A modal/binning approach for light duty gasoline vehicles (LDGV), heavy duty diesel
vehicles (HDDV) and nonroad diesel vehicles has been demonstrated by NCSU and EPA

e TheNCSU approach for on-road vehiclesis an intuitive and easy to explain one based
upon bins that correspond to idle, acceleration, cruise, and deceleration behaviors for
onroad vehicles. The ability to easily explain the approach to policy makers and the
public is an important consideration in gaining acceptance for a new modeling approach.

o A dtatistical data-driven statistical approach for developing bins, using Hierarchical Tree-
Based Regression (HTBR) has been demonstrated and proven by NCSU and can be used
in the identification of appropriate binning criteria.

e Methods have been demonstrated by NCSU for handling cold start emissions as part of
the modal/binning approach.

e Methods have been explored and recommended by NCSU regarding estimation of modal
emission rates from aggregate data (e.g., dynamometer driving cycle data).

e The modal/binning approaches have been evaluated by validating the approachesin
comparison to real-world emission measurements.

e Timeseriesanaysis aready performed by NCSU as part of the shoot-out establish a
credible scientific basis for determining appropriate averaging times for the
modal/binning approach to be developed in this project.

e Thegenera framework for devel oping databases, analyzing the data, and developing
modal models has aready been established at NCSU, both as part of the shootout project
and in other previous work.

A key goal of the binning methodology isto develop modal emission rates in a manner that does
not require additional modeling analysis, such as regression modeling, and that eliminates the
need for many correction factors common to existing models such as Mobile5 and Mobile6.
Idedlly, the emission rates estimated for a specific bin should be based directly on the sample of
raw data falling into that bin.

On-board data is a promising means for devel oping tail pipe emissions estimates. However, as
noted by EPA and as explained in the NCSU final report from the shootout (Frey, Unal, and
Chen, 2002), in the short-term other sources of data will continue to play an important rolein
populating or evaluating MOVES. Thus, an important step in the development of MOVES isto
evaluate the feasibility of techniques for applying the modal binning approach to data from other



sources, such as driving cycle dynamometer data and remote sensing device (RSD) data. For
example, Frey et al. (2002) demonstrated an approach for estimating modal emission rates from
aggregate data.

The key purpose of this project is to evaluate methods for developing modal emission rates from
disparate data sources (e.g., on-board data, laboratory second-by-second data, aggregate driving
cycledata, I/M data, and RSD data) for arelatively small “pilot” dataset of light duty vehicles.

In the shootout, NCSU demonstrated that similar approaches can be applied to HDDV and to
nonroad diesel vehicles; therefore, it is reasonable to focus resources on the example of LDGV's
in this project. Furthermore, in previous work, NCSU demonstrated how to develop abin for
cold starts. Therefore, this project will focus on hot stabilized tailpipe emissions. This project
will demonstrate at the proof-of-concept level the methodology for developing modal emission
ratesin MOVES using awide variety of data sources, including an evaluation of the applicability
of aggregate (bag) data and RSD data.

An important element of MOV ES is the incorporation of uncertainty analysis as part of the
emission estimation process. EPA has proposed to characterize emission rates for each
vehicle/operating bin with a mean value, a distribution form, and standard deviation, to allow for
the development of a utility in MOV ES which would apply Monte Carlo analysisto generate
uncertainty estimates of model final results. Moreover, this approach enables a change in how
normal and high emitters are characterized. In previous models, EPA has stratified datainto
normal and high emitter categories. In the new approach, EPA proposesto treat all vehicles
within abin as a continuous distribution. Thus, for a given vehicle/operating bin, the distribution
of emissions will reflect the variability of emissions among all vehicles within the bin, including
what are now referred to as normal and high emitters. This approach sets the stage for estimation
of the effect of I/M programs with respect to the characteristics of the distribution of inter-
vehicle variability in emissions. For example, an I/M program would be expected to identify
some portion of the vehicles with emissions above some value and to repair/modify the vehicles
so as to reduce their emission rates. This, in turn, would change the distribution of inter-vehicle
variability in emissions.

1.1 Objectivesof thisProject
The objectives of this project are asfollows:

e Develop, demonstrate, and report an analytical approach for producing exhaust modal
emission rates and emission rate disitributions for MOVES from a variety of data
sources, possibly including aggregate (bag) data and RSD data.

e Develop, demonstrate, and report a methodology for estimation of model uncertainty and
variability in emissions estimates

e Validate the devel oped approach against an independent dataset

e Develop arecommended step-by-step methodology for generating modal emission rates
in MOVES.
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Figure 1-1. Simplified Schematic of Project Tasks and Their Inter-Relationships

1.2  General Technical Approach

In this section, an overview is provided of the technical approach of this project. This project
was organized based upon three major tasks:

e Task 1. Develop Pilot Modal Emission Rates From Multiple Data Sources

e Task 2. Perform Validation of Developed Model Against Independent Dataset

e Task 3. Summarize Specific Methodologies for Developing Modal Emission Rates for
MOVES

The first task is comprised of many specific subtasks. We subdivided Task 1 into subtasks as
follows:

Task 1a Development of Analysis Dataset
Task 1b: Development of Binning Methodol ogy
Task 1c: Characterization of Uncertainty

Task 1d: Applicability to Bag Data

Task 1e: Applicability to RSD Data

The relationship among the three mgjor tasks, and among the subtasks of Task 1, isillustrated in
Figure 1. The key starting point of the work was the devel opment of an analysis data set in
subtask 1a. The other subtasksin Task 1, including subtasks 1b, 1c, 1d, and 1e, were dependent
upon the availability of the analysis data set, which included on-board data, second-by-second
laboratory data, IM240 data, aggregate (bag) data, and RSD data. Task 1b included severa



considerations that areillustrated by the tie-line to a box listing the binning approaches that were
evaluated, the averaging times that were compared, the emission factor units that were compared,
and the method for weighting of data. The uncertainty analysis method in Subtask 1c depended
upon the binning approach selected as aresult of Subtask 1b. However, atwo-way arrow is
shown between Subtasks 1b and 1c to illustrate the iterative nature of the selection of a binning
approach and an uncertainty analysis approach. For example, the choice of averaging time and
of weighting method in Subtask 1b influenced the results obtained for the uncertainty analysis
method in Subtask 1c, and the availability of uncertainty analysis methods in Subtask 1c has
implications regarding which types of weighting methods were chosen as preferred in Subask 1b.
The applicability of bag and RSD data to the binning approach methodology also impact the
uncertainty characterization. The specifics of these kinds of interactions among subtasks and
trade-offs are addressed in more detail in the discussion of each specific subtask.

In the process of developing the tasks during the course of the project, the following key
guestions emerged and were addressed:

1. What dataset should be used for the final version of the conceptual model? (Task 1a,
Chapter 2)

2. Which binning approach should be used? (Task 1b, Chapter 3)

3. How much detail should be included in the binning approach, in terms of how many
explanatory variables and how many stratafor each variable? (Task 1b, Chapter 3)

4. What averaging timeis preferred as abasis for model development? (Task 1b, Chapter 4)
5. What emission factor units should be used? (Task 1b, Chapter 5)

6. What weighting approach should be used, when comparing time-weighted, vehicle
weighted, and trip weighted? (Task 1b, Chapter 6)

7. How should variability and uncertainty be characterized? (Task 1c, Chapter 7)

8. How should aggregate bag data be analyzed to derive estimates of modal emission rates?
(Task 1d, Chapter 8)

9. What isthe potential role and feasibility of incorporating RSD data into the conceptual
modeling approach? (Task 1e, Chapter 5)

10. How should the conceptual model be validated and what are the results of validation
exercises? (Task 2, Chapter 9)

1.3  Organization of this Report

Thisreport is organized on the basis of the ten motivating questions of the previous section. The
development of an analysis data set is addressed in Chapter 2. Chapter 3 presents the empirical
and statistical basis for development of modal emissions modeling approaches. The selection of



apreferred averaging time for model development is discussed in Chapter 4. Two major topics
are addressed in Chapter 5: (1) what emission factor units should be used; and (2) evaluation of
the role of RSD data with respect to model development or model validation. Three different
data wei ghting approaches based upon time, trip, and vehicle averaging are compared in Chapter
6. Methods for quantifying variability and uncertainty are presented and compared in Chapter 7.
Methods for estimating modal emission rates from aggregate driving cycle data are presented
and evaluated in Chapter 8. The conceptual modal emissions model developed in thiswork is
verified and validated in Chapter 9. Chapter 10 provides a brief summary of the specific
methodology for developing modal emission rates that are recommended for future work.



2 DEVELOPMENT OF ANALYSISDATASET

The objective of Subtask laisto develop a combined data set for running exhaust emission rates
for LDGV based upon data provided by EPA. The dataset included the following data:

Approximately 100,000 seconds of datafrom 17 on-board vehicles from the “ shootout”
analysis,

Approximately 75,000 seconds of data on 25 vehiclestested at EPA’s |ab for the Mobile6
facility-specific driving cycles and other standard cycles;

82,800 seconds on 311 vehicles tested on the IM240 as part of the Colorado IM program;
Bag-only and second-by-second data on 74 vehicles tested over FTP (i.e., Bag 2 and Bag
3) and US06 for development of UC Riverside’s Comprehensive Modal Emission Model;
and

RSD data on 200,966 Tier 1 LDGV's collected as part of a Missouri’s Gateway Clean Air
Program.

The data sets typically contained the following information:

21

The second-by-second datasets typically had the following data fields: time; vehicle
speed; fuel consumption; HC, CO, NOy, and CO, emissions; vehicle engine size; vehicle
weight; vehicle age; vehicle technology; vehicle mileage; road grade (for on-board data);
ambient temperature; and ambient humidity. Some datasets, such as from on-board data,
typically also had data for more variables such as: engine RPM; latitude; longitude;
atitude; mass air flow; intake air temperature; engine load; and other engine related
variables.

Bag data sets included total emissions for CO, HC, NOy, and CO,. The bag data were
typically from standard driving cycles for which either the standardized or actual test
second-by-second speed trace was available. Vehicle-related variables such as vehicle
engine size, vehicle mileage, vehicle age, vehicle technology, and vehicle weight were
available for “bag” data sets. Additional datawere available for some “bag” data sets
such as a/c usage, ambient temperature, and relative humidity.

RSD data included instantaneous vehicle speed and emission rates for pollutants
normalized to CO, emissions, such as the ratios of CO/CO,, HC/CO,, and NO,/CO,. In
addition, vehicle-related data such as engine size and model year based upon the license
plate number that was observed during data collection, identification of the VIN based
upon registration data, and decoding of the VIN. However, information regarding
vehicle mileage accumulation was not available. Additional variables such as road grade,
ambient temperature, and relative humidity were available.

Development of a Combined Database

In performing the work for this study, our general philosophy was to make use of readily
available software tools where possible. Therefore, we made use of Visual Basic, Excel, and
SASto asignificant extent, consistent with our previous experience in working with similar
datasets.

The combined second-by-second dataset, including on-board data, 1aboratory dynamometer data,
and IM 240 data, was created using programs written in Visual Basic and SAS. For this purpose,



Visua Basic programs that were prepared in previous studies (Frey et al., 2001; Frey et al.,
2002) were utilized. The first step in developing a combined dataset was to make sure that each
datafile has the same data fields. Each datafile represents avehicle or atrip. A Visua Basic
code was utilized to process the data and arrange the data fields such that each file has the same
format. Formatting of the fields was conducted with Visual Basic programs that were written for
this purpose in previous studies. After completing the processing of all datafiles, al of the data
was in Excel with the same format. The Excd files were first exported to SAS and combined
together in SAS using codes written specifically for this purpose.

For quality assurance purposes, the data were screened to check for errors or possible problems.
A notable issue was that there were zero and negative numbers in the second-by-second
emissions data. Specifically, 13 percent of the data were comprised of zero or negative values
for CO, 12 percent for HC, 22 percent for NOy, and 0.8 percent for CO,. Since measurements
errors could result in negative values that are not statistically significantly different from zero or
asmall positive value, the datawere retained asis.

Several post-processing steps were applied to the dataset. The post processing steps included:

(1) humidity corrections for NO, emissions for the on-board data; (2) adjustments to the HC data
for the on-board data; and (3) calculation of derived variables such as acceleration, power
demand, and vehicle specific power. Since the dynamometer data was already corrected for
humidity, a humidity correction was aso applied to the on-board data. For this purpose, a
humidity correction factor that was reported in the on-board dataset was utilized. The on-board
measurements of HC emissions were made using NDIR, whereas the dynamometer
measurements were made using FID. In other work, the measurements of the on-board
instrument developed by Sensors that was used to collect the EPA on-board data were compared
with measurements made with a laboratory dynamometer. By comparing the total HC emissions
for specific vehicles and driving cycles, it was observed that the NDIR measurements resulted in
lower values than did the FID measurements. Based upon the avail able comparison data, a
correction factor of,1.65 was utilized to adjust the on-board HC measurements to an approximate
equivalent basis. Because the adjustment factor was based upon an average of total trip
emissions, the adjustment factor does not take into account possible variability in the ratio of FID
to NDIR measurements on a second-by-second basis.

Variables such as accel eration, power demand and V SP were estimated from other variables such
as vehicle speed. Acceleration is estimated from the observed speed by taking second-by-second
differencesin speed. However, to account for the effects of road grade, the estimate of
acceleration was modified. Asindicated by Bachman (1999), gravity exerts aforce on avehicle
that must be counteracted. Therefore, the accel eration effect of road grade should be included in
order to estimate the effective acceleration. The effect of road grade on acceleration can be
quantified as:

Acceleration (mph/sec) = 22.15 (mph/sec) x Gradient (%) (2-1)
Power demand was estimated using the following equation:
P=vXxa (2-2)

where;



P = Power Demand (mph?/sec)
% = Vehicle speed (mph)
a = V ehicle acceleration (mph/sec)

V ehicle Specific Power (VSP) was estimated using an equation given by EPA, whichiis:
V'SP (kW/ton) = v[1.1a+ 9.81(atan(sin(grade)))+ 0.132]+ 0.000302v®  (2-3)

The coefficients given in Equation (2-3) are specific for on-board data. However, coefficients for
dynamometer measurements were not available in this study, therefore, the same coefficients
were used for dynamometer dataaswell. Whileit is recognized that the specific estimate of

V SPisafunction of vehicle weight and of the specific values of the parameters for each
individual vehicle, it was beyond the scope of this study to develop detailed vehicle-specific
estimates of VSP.

2.2  Organization of the Data for Analysis

The combined database was used to create specific databases for different analyses throughout
the project. These databases included the following:

e A *“Modeing” or “Calibration” database comprised of data for most of the on-board
measurements, most of the EPA dynamometer data, and most of the NCHRP data. This
database was also used as “ Validation Data Set 1”

e “Validation Data Set 2" was comprised of asmall sample of vehicles from the EPA on-
board, EPA dynamometer, and NCHRP data that were excluded from the modeling
database.

e IM240 data were used separately from the other data

e The NCHRP datawere used in the analysis of methods for developing modal emission
rates from aggregate bag data

e “Validation Data Set 3" was comprised of data obtained from the California Air
Resources Board, and are also referred to as “ARB data.”

e RSD dataincluded approximately 2,000,000 seconds of data. Of this dataset, 200,966
data points were selected randomly for analysis, where each point represents
measurement for one vehicle.

The data from on-board, EPA dynamometer and NCHRP dynamometer measurements were
combined into the modeling data set, and included:

e 71,699 seconds of datafrom 13 on-board vehicles from the “shootout” anaysis,

e 68,482 seconds of data on 33 vehiclestested at EPA’ s lab for the Mobile6 facility-
specific driving cycles and other standard cycles; and

e 92,000 seconds of data on 49 vehiclestested over FTP and US06 for devel opment of UC
Riverside’s Comprehensive Modal Emission Model.

Therefore, the combined database for modeling has atotal of 232,181 seconds of data. The
combined database has the following datafields: source for data (e.g., EPA dynamometer);
vehicle make; vehicle model; VIN; number of vehicle tested; number of trip tested; speed;
acceleration; ambient temperature; ambient humidity; road grade; power estimate, positive
power estimate; V ehicle Specific Power (VSP) estimate; positive V SP estimate; CO, CO,, HC,



NO, emissions; vehicle model year; vehicle engine displacement; number of cylinders; air
condition use; and vehicle net weight.

Validation Data Set 2 included the following data:

e 3vehiclesfrom EPA dynamometer data
e 3vehiclesfrom EPA On-board data
e 25vehiclesfrom NCHRP data

The validation dataset included 83,183 seconds of data. The data fields for this dataset were the
same as for the Modeling dataset.

The NCHRP dataset included 8 high-emitter vehicles as reported in a User’s Manual prepared by
University of Californiaat Riverside. In preparing Validation Dataset 1 and 2, data were selected
randomly from NCHRP data. Six of the high emitter vehicles were included in Validation
Dataset 1, and two of them were included in Validation Dataset 2.

Validation Data Set 3 included datafor 17 vehiclesfrom 11 different UCC cycles. The
validation dataset included nominal speed profiles and total emissions for 15 of the vehicles, and
actual speed profiles and second-by-second emissions for two of the vehicles. Detailed
information regarding the Validation Datasets is given in the Appendix.

Datafor IM240 were utilized for comparative purposes, as described in this report, including
comparing average emission rates for the developed modes with respect to those obtained from
the calibration data. The IM 240 dataset included 311 vehicles tested on the IM240 cycle, for a
total of 82,800 seconds of data. The datafields for this data set were the same as for the
Modeling dataset.

EPA obtained an RSD database from the state of Missouri that contained approximately 2
million records. Of this dataset, 200,966 data points were selected randomly for analysis. This
dataset included datafields similar to the modeling database. However, vehicle net weight was
not available and engine displacement was only available for part of the dataset. Each data point
in the RSD database used for analysis represents a unigue vehicle.

2.3 Summary

Data from avariety of sources were reviewed and used to devel op data bases for different
components of this project. A modeling database comprised of approximately 232,000 seconds
of data from on-board and laboratory dynamometer measurements was compiled for usein
developing a conceptual modeling approach. A separate |M 240 database was devel oped for
comparison to the modeling data. A database comprised of RSD data was developed in order to
answer key questions regarding the potential role of RSD datain model development or model
interpretation. A database comprised of NCHRP dynamometer data was developed in order to
evaluate methods for estimating modal emissions from aggregate driving cycle data. In addition
to the modeling data set, two other databases were developed for model validation purposes,
including an independent sample of on-board and dynamometer measurements for vehicles
similar to those used in the modeling data base and a separate database obtained from CARB.
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3 DEVELOPMENT OF A MODAL EMISSIONS MODELING APPROACH

The objective of this section is to demonstrate the modal “bin” approach on datafor “running”
hot-stabilized exhaust emission rates, and to determine the best binning approach based upon
evaluation of alternative approaches. This chapter focuses upon the use of one second datain
units of mass per time. Chapter 4 compare different averaging times and Chapter 5 compares
different emission factor units. The two most promising binning approaches identified in the
“shootout” were the V SP-based approach evaluated by EPA and the driving mode-based
approach evaluated by NCSU. These two approaches were compared in this project. A key
methodological component of this work was the use of Hierarchical Tree-Based Regression
(HTBR), using S-Plus software. This chapter focuses on answering the second and third key
questions of this project: (1) which binning approach should be used?; and (2) how much detail
should be included in the binning approach, in terms of how many explanatory variables and
how many strata for each variable? First, the methodology for developing bins based upon
statistical methods is presented. Results of analysis of the modeling data set based upon each of
the NCSU and V SP based approaches are presented. An eva uation of each approach is made,
followed by a selection of a preferred approach.

3.1  Statistical Method for Developing Binning Criteria

HBTR isaforward step-wise variable selection method, similar to forward stepwise regression.
This method is also known as Classification and Regression Trees (CARTS). Conceptualy,
HTBR seeksto divide a data set into subsets, each of which is more homogeneous compared to
the total dataset. Atagiven leve of division, each of the subsetsisintended to be different in
terms of the mean value. Thus, HTBR isastatistical approach for binning data. More
specifically, the method is based upon iteratively asking and answering the following questions:
(1) which variable of all of the variables ‘offered’ in the model should be selected to produce the
maximum reduction in variability (also referred to as deviance in HTBR methodology) of the
response?; and (2) which value of the selected variable (discrete or continuous) resultsin the
maximum reduction in variability (i.e., deviance) of the response? The method uses numerical
search procedures to answer these questions. The HTBR terminology is similar to that of atree;
there are branches, branch splits or internal nodes, and leaves or terminal nodes (Washington et
al., 1997).

The iterative partitioning process is continued at each node until one of the following conditions
ismet: (1) the node of atree has met minimum population criteria which is the minimum sample
size at which the last split is performed; or (2) minimum deviance criteria at a node have been
met (Frey et al., 2002; and Unal 1999).

In developing bins, vehicle-based variables such as vehicle class, mileage, age, engine size,
vehicle weight, and technology were utilized. V ehicle operation variables such as vehicle speed,
acceleration, and surrogate for power demand (i.e., Vehicle Specific Power) wereincluded in
thisanalysis. Based upon the availability of the data, external parameters such as road grade, air
condition usage, ambient temperature, relative humidity were incorporated during HTBR
anaysis. S-Plus scripts that were written in previous studies were used in this study.
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In developing bins both “unsupervised” and “ supervised” techniques were utilized. In the
“unsupervised” technique, datais provided to the HTBR with no prior specification of branches
or nodes of the regression tree. In this situation, HBTR is allowed to create whatever bins result
from direct application of HBTR. In contrast, for the “supervised” technique, HTBR isforced to
start with pre-determined modes. A partially supervised technique can often be a better approach
than a purely unsupervised technique. Thisis because HTBR can be sensitive to artifacts of
variability in the data that may not be important from a practical perspective, and HBTR may
give unexpected or difficult to interpret resultsif the unsupervised techniqueis used. Sometimes
HBTR will repeatedly “split” on the same subset of variables (e.g., speed and accel eration)
which may indicate the need for a new explanatory variable that is a function of the subset of
variables. For example, if HBTR splits repeatedly on speed and acceleration, it may be better to
remove speed and acceleration as criteria for creating bins and instead offer some variablethat is
a combination of both speed and acceleration, such as VSP or power demand.

The two binning approaches that were evaluated are the V SP approach demonstrated by EPA
and the driving mode approach demonstrated by NCSU (Frey et al., 2002). VSPisasurrogate
for power demand and is afunction of vehicle speed, road grade, and acceleration. In an
unsupervised approach, the selection of bins would be determined by the results of application of
HBTR, rather than based upon arbitrary bin assignments, such as those made by EPA as part of
the shootout (e.g., 1 kw/ton bins from —15 to +30).

The HBTR-based approach was also applied to the driving mode definitions developed by
NCSU. Aspart of previouswork (Frey et al., 2001; 2002), NCSU developed a priori driving
mode definitions. Idle is defined as based upon zero speed and zero acceleration. The definition
of the acceleration mode includes severa considerations. First, the vehicle must be moving and
increasing in speed. Therefore, speed must be greater than zero and the accel eration must be
greater than zero. However, vehicle speed can vary dlightly during events that would typically be
judged as cruising. Therefore, in most instances, the accel eration mode is based upon a minimum
acceleration of two mph/sec. However, in some cases, a vehicle may accelerate slowly.
Therefore, if the vehicle has a sustained acceleration rate averaging at |east one mph/sec for three
seconds or more, that is also considered acceleration. Deceleration is defined in asimilar manner
as acceleration, except that the criteriafor deceleration are based upon negative accel eration
rates. All other events not classified asidle, acceleration, or decelerations are classified as
cruising. Thus, cruising is approximately steady speed driving but some drifting of speed is
alowed. It was shown by NCSU in previous studies (Frey et al., 2001; 2002) that emission
estimates for these driving modes are statistically significantly different from each other. An
example comparison of modal emission rates for hot stabilized driving is given in Figure 3-1.

In working with the NCSU-based approach, two specific applications of HBTR were made. In
thefirst, the data set was modified to include a bin category for each data point. Unsupervised
HBTR was applied to the modified database to determine whether HBTR will subdivide the data
based upon the NCSU modal definitions preferentially compared to other possible binning
criteria. Additional bins were developed using HBTR in order to further refine the binning
approach. Thistype of approach was demonstrated briefly in the previous shootout project (Frey
et al., 2002) and was expanded in its application in this project.

12
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Figure 3-1. Average Modal Emission Rates for LDGV's (Source: Frey et al., 2002)

In developing modal “bins’ in HTBR it should be kept in mind that there is a trade-off between
the number of bins and the usefulness of the empirical model based upon the bins. Whileitis
possible to obtain additional explanatory power by increasing the number of bins, there are
diminishing returns associated with creation of an increasing number of bins. Furthermore, the
HBTR determines bins based upon whether there are differences in the average emissions among
the possible bins. It does not determine bins based upon what portion of trip or total emissions
are explained by each bin. Therefore, it is possible to obtain a potentially large number of bins
that do not help explain asignificant portion of total trip or aggregate emissions. Supervised
techniques are sometimes more useful than unsupervised techniques in helping to avoid a
proliferation of relatively useless bins. Another method for dealing with the possible
combinatorial explosion of binsisto “prune’ atree created using HBTR. For example, HBTR
could be allowed to develop alarge number of bins for purposes of determining a practical upper
limit on the amount of deviance in the data set that can be explained by the bins. Then, the
number of bins can be reduced to a point where there is still good explanatory power of the
binning approach with a much smaller number of bins. This process requires some judgment and
therefore would be considered to be a supervised technique. This approach has been
demonstrated previoudy (e.g., Rouphail et al., 2000; Frey et al., 2002).

Another important issue regarding bin development is that bins that are formed under different

branches of the tree (see Figure 3-2) may not be statistically significantly different from each
other
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Figure 3-2. Sample Regression Tree Diagram (Numbers represent Node Numbers of the Tree)

when the number of binsincreases. All of the dataare “fed” into the HBTR process as Node 1.
HBTR will divide into separate data sets at each branch in the tree. Thus, the first split of the
dataisinto bins represented by Nodes 2 and 3. Then, another split is made in which the data are
further subdivided into four nodes, Nodes 4, 5, 6, and 7. A third split results in eight modes,
which are Nodes 8 through 15. Each time a split is made, the two nodes that are subdivided
based upon a higher level node are statistically significantly different from each other with
respect to the mean value. Thus, for example, Nodes 8 and 9 will have significantly different
mean values. However, Nodes 9 and 10, which result from different branches, are not
guaranteed to have significantly different means. Thus, it is possible that alarger number of
nodes could result in some overlap with respect to mean values. In other words, the creation of a
large number of bins or nodes may not substantially increase explanatory power compared to a
smaller number of bins or nodes. We evaluated the statistical significance of differencesin the
average value of emissions associated with different bins and considered lack of statistical
significance of average values as a stopping criteria pertaining to the creation of additional
branches of the regression tree.

Not al modes are equally important. Some modes are more important than others since they
represent alarger share of total emissions than others. For example, in a previous study by
NCSU it was found that acceleration and cruise modes are the most important modes in terms of
total trip emissions. Figure 3-3 illustrates the distribution of time spent in each driving modes
(i.e., cold-start, idle, acceleration, deceleration, and cruise) and the corresponding percentage
contribution of each mode to total trip emissions for each of four pollutants. One key finding is
that the idle and decel eration modes contribute relatively little to total emissions for any of the
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Figure 3-3. Example of Average Distribution of Time and Emissions with Respect to Modes
(Source: Frey et al., 2002)

four pollutants compared to cruise, acceleration, and cold start emissions. Therefore, thereis
likely to be little to be gained by spending resources to improve the explanatory power of theidle
and deceleration modes. In contrast, cruising, acceleration, and cold start, in a general
descending order, are the most important contributors to total emissions. Therefore, an iterative
approach was taken to develop bins. First bins were developed using the HTBR method. The
percent contribution of each mode total emissions was estimated. Based upon these results, the
definitions of the modes were revised so that no single mode contributes disproportionately to
the total emissions represented in the database.

3.2 Development of the VSP-Based M odal Approach

In developing bins based upon V SP, first step was to explore the relationship between V SP and
emissions with the help of scatter plots. Based upon exploratory analysis of the sensitivity of
emissionsto VSP and other explanatory variables, a recommended approach was devel oped for a
modal model.

3.2.1 Exploratory Analysis

Figure 3-4 shows the relation between V SP and emissions for HC, NO, CO, and CO,. VSP data
were binned into 1kw/ton bins from -50 to +50 and the average within each bin is shown.

It is observed from these scatter plots that there is an approximately monotonic increase in
emissions for al four pollutants for positive VSP. Emissions tend to be very low for negative

V SP bins and tend to increase as V SP increases above zero. For very high values of VSP (i.e,,

V SP bins higher than 45) there is an apparent decrease for CO, and NOy especially. The number
of data pointsin these bins are small, typically less than 100. Thus, the reliability of the
estimates for the very high VSP binsin question. However, one reviewer of this work indicated
that there is the possibility that emissions may actually decrease on average in the very high VSP
range.
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HBTR was applied to the modeling dataset in order to see whether VSP would be selected by
HTBR as the mot important explanatory variable. An example for this analysisis given for NO
emissionsin Figure 3-5. Vehicle operating parameters as well as vehicle technology parameters
were used as possible explanatory variables. These parameters are: speed; acceleration; VSP;
temperature; engine displacement; number of cylinders; a/c usage; temperature, odometer
reading; model year; and net weight. Of all these parameters V SP was selected as the first split
by HTBR. The vertical distance depicted for each branch is proportional to the reduction in
deviance associated with each explanatory variability. In this specific case, splitting the data set
into two strata based upon a V SP criteria of 13.2 lead to a substantial reduction in deviance.
Under the second branch of the tree, a second split was made based upon vehicle net weight.
However, the reduction in deviance based upon further stratification by net weight is less than
the reduction in deviance from the first split based upon VSP. At the lowest portion of the tree, a
second split based upon VSP is observed for the smaller net weight category of data. When a
variable occurs repeatedly in the tree, such as VSP doesin this case, that is evidence that the
variable plays an important role. In this case, VSP alone helps explain a substantial portion of
deviancein the data. When the data are further stratified, V SP explains additional deviance for
vehicles with a net weight less than 4,400 pounds. Thisresult illustrates that V SP is the most
important variable and therefore could be selected as the first criteriafor developing bin
definitions. Qualitatively similar results were obtained for other pollutants.

A judgment was made that it would be useful to separately analysis the role of vehicle operating
parameters (e.g., VSP) as distinct from vehicle characteristics (e.g., net weight, odometer
reading, engine size). When only vehicle operating parameters were utilized in HTBR, VSP was
again found to be the most important explanatory variable.

Because V SP was consistently identified as the most important explanatory variable, modal bins
were developed using VSP. HBTR was not used to develop the actual definitions of the bins.
While useful in identifying which variables offer the most capability to explain deviancein the
data set, an “unsupervised” approach to HBTR does not provide optimal bin definitions. For
example, it is possible that nodes that occur under different branches of the tree may have similar
average emission rates. From apractical perspective, it is not useful to have bins with similar
average emission rates, since the objective isto explain variability in emissions. Therefore, a
“supervised” approach was adopted. In the supervised approach, two key considerations were
taken into account. Thefirst isthat ideally each mode should have a statistically significantly
different average emission rate than any other mode. The second is that no single mode should
dominate the estimate of total emissions for atypical trip as represented by the database.
Therefore, to guide the selection of modal definitions, it was decided that no mode should
explain more than approximately 10 percent of total emissions. Based upon these two
considerations, V SP modes were defined. 1t should be noted that same modes were defined for
all the pollutants. Table 3-1 gives the VSP modal definitions.

Figure 3-6 shows average modal rates for these bins for all four pollutants. The average modal
rates are significantly different from each other for all four pollutants. In al four pollutants the
average modal rates for the first two modes, Modes 1 and 2, are higher than average rate for
Mode 3. Thereisanincreasing trend in emissions with increase in VSP bins for Modes 4
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Table 3-1. Definitions for VSP Modes

VSP Mode Definition
1 V SP<-2
2 -2<=V SP<0
3 0<=VSP<1
4 1<=VSP<4
5 4<=V SP<7
6 7<=VSP<10
7 10<=VSP<13
8 13<=VSP<16
9 16<=VSP<19
10 19<=VSP<23
11 23<=VSP<28
12 28<=VSP<33
13 33<=VSP<39
14 39<=VSP
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Figure 3-5. Example of Unsupervised HTBR Tree Results for the Modeling Data Set for NOy Emissions (g/sec)
Note: The vertical distance of each branch indicates the proportional explanatory benefit of each particular split, and the numbers at
the bottom of the branches are the average emission rates for the stratified data.
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through 14 for all of the pollutants. For CO, the range in average moda emissions is more than
two orders-of-magnitude, when comparing Mode 3 and Mode 15. A similar comparison for
NOy, HC, and CO, implies arange of approximately one to two orders-of-magnitude.

Because each pollutant has a different sensitivity to the modal definitions, there are some cases
in which amode may contribute approximately 10 percent to the total emissions of one pollutant
but afar lower percentage of total emissions for another pollutant, as shown in Figure 3-7. For
example, for the high VVSP bins, such as Modes 12, 13, and 14, approximately 10 percent of the
total CO emissionsin the calibration data set are accounted for, for atotal of over 30 percent of
the total CO emissions. These four modes account for less than three percent of total travel time
in the database. Furthermore, these modes account for only approximately 15 percent or less of
total NOy, HC, and CO, emissions. Theimplication is that high VSP has a more substantial
impact upon CO emissions than for the other pollutants. This seems plausible, in that high VSP
is likely to be associated with an increased frequency and duration of command
enrichment, which tends to have more effect on CO emissions than, for example, NO, emissions.
Because pollutants respond differently to activity captured by each mode, it was necessary to
have 14 modes in order that no individual mode represent more than approximately 10 percent of
the emissions of any single pollutant. Of course, the proportion of emissionsin each modeis
conditional on the database used to estimate the modal emission rates.

3.2.2 Consderationsin Refinement of the VSP-Based Modal Approach

In order to further improve modal definitions, parameters related to vehicle technology were
included in an analysis to determine which ones are most useful in further explaining variability
in emissions. These parameters included were: engine displacement; number of cylinders,
odometer reading; model year; and net weight. Some of these parameters are correlated with
each other. For example, odometer reading and model year tend to have a positive dependence,
and engine displacement, number of cylinders, and net weight tend to have a positive
dependence. The correlation analysis for these parametersis given in Appendix. Therefore, in the
final model, it is not expected to be necessary to include all of these. Separate HTBR trees were
fit to datain each mode for each pollutant separately. Tables 3-2 through 3-5 summarize the
results of these analyses for CO, CO,, HC, and NOy respectively.

One of the observations from Tables 3-2 through 3-5 is that both net weight and engine
displacement are important variables for all of the pollutants for most of the modes. Engine
displacement is an important variable especially for CO and CO,, whereas odometer reading is
important especially for HC. Based upon the results given in Tables 3-2 through 3-5,
improvements in the VSP modal definitions were considered based upon comparison of based
upon net weight or engine displacement. In addition, the effect of stratification of V SP bins with
respect to odometer reading was also considered.
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Table 3-2. Unsupervised HBTR Regression Tree Results for CO for Each of 14 VVSP Modes

M ode 1% Cut point 2" Cut point 39 Cut point
1 E* 5.3 NW 4400 NW 3600
2 E 53

3 E 5.3

4 E 53

5 E 5.3 NW 3600
6 NW** 4400 O 15000

7 NW 4400 NW 3600

8 NW 4200 O 15000 O 24000
9 NW 4200 Crx** 5

10 NW 4200 C5

11 NW 4200 C5

12 NW 3800 NW 3200

13 O*** 15000 O 79000
14 NW 3300 O 45000 O 79000

Table 3-3. Unsupervised HBTR Regression Tree Results for CO, for Each of 14 VSP Modes

M ode 1% Cut point 2" Cut point 39 Cut point
1 NW 3200 C5 O 25000
2 NW 3200

3 C5 NW 3200

4 C5 NW 2700 NW 3600
5 E 2.3 NW 2800 NW 3700
6 E 2.3 E 1.95 C>7

7 NW 3700 E 195 E 39

8 NW 3700 E 1.95 E 35

9 E 35 O 46000

10 E 35 O 44000

11 E 35 O 46000

12 E 35 O 37000

13 E 35 O 23000

14 E 35 O 60000

Note: “NW” means “Net Vehicle Weight (Ibs)”, “O” means “ Odometer Reading (miles)”,
“C” means “Number of cylinders’, “E” means “ Engine Displacement (liters)”. The number

following the variablesis the value of the cut point.
Results are not shown in cases where sample size was small
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Table 3-4. Unsupervised HBTR Regression Tree Results for HC for Each of 14 VVSP Modes

M ode 1¥ Cut point 2" Cut point 39 Cut point
1 O 77000

2 O 77000 O 98000
3 O 79000

4 O 79000 O 98000
5 O 78000 O 98000
6 O 78000 O 98000
7 O 78000 O 30000 O 98000
8 O 78000 O 26000

9 O 78000 O 33000 O 95000
10 O 78000 O 32000

11 O 43000 O 95000
12 O 43000 NW 2800
13 O 43000 O 15000 NW 3000
14 O 46000 NW 3000

Table 3-5. Unsupervised HBTR Regression Tree Resultsfor NO, for Each of 14 VSP Modes

M ode 1% Cut point 2" Cut point 39 Cut point
1 NW 3600 O 23000 NW 3800
2 O 66000 O 83000
3 O 30000 O 43000
4 NW 4400 O 66000

5 NW 4400 O 66000

6 NW 4400 O 66000

7 NW 4400 O 66000

8 O 70000 NW 2800 NW 3800
9 NW 4200 O 38000

10 NW 4200 O 38000

11 NW 4200 O 38000

12 O 13000

13 O 14000 O 95000
14 NW 3800 NW 3600 NW 2800

Note: “NW” means “Net Vehicle Weight (1bs)”, “O” means “Odometer Reading (miles)”,
“C” means “Number of cylinders’, “E” means “Engine Displacement (liters)”. The number

following the variables is the value of the cut point.
Results are not shown in cases where sample size was small
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Figures 3-8 and 3-9 present the effect of net weight and engine displacement, respectively, on
emissions as applied to the VSP modal bins. For Figure 3-8, the data were stratified based upon
avehicle weight of 4,000 pounds, and for Figure 3-9, the data were stratified based upon an
engine displacement of 3.5 liters. These cut-offs were chosen based upon the results of Tables 3-
2 through 3-5 and were intended to be representative values. Although for some pollutant/mode
combinations there is no significant or substantial difference in average emissions, for other
combinations there are statistically significant differences based upon either net weight or engine
displacement. For example, for the higher VSP modes (e.g., Modes 10 to 14), average emissions
arelarger for al four pollutants for the larger weight category. In the case of CO,, the trend of
higher emissions for heavier vehiclesis systematic among all of the positive VSP modes (i.e.
Modes 3 to 14); this difference is expected since heavier vehicles typically have lower fuel
economy and, hence, higher CO, emissions than lighter vehicles. For CO and NO, for the most
part emissions of heavier vehicles are higher for the positive VSP modes. For HC, thetrend is
dightly different than other pollutants. For the first eight modes, lighter vehicles have higher
emissions; however, for Modes 10 to 14, heavier vehicles have significantly higher emissions.
These results confirm that vehicle net weight is an important variable. The differencesin
emissions between the weight categoriesis on the order of afactor of two to five in most cases.

The relationship between emissions and engine displacement is shown for all pollutants and
modesin Figure 3-9. Although there are some exceptions, particularly for the negative VSP
modes (e.g., Modes 1 and 2), typically vehicles with larger engine size have significantly higher
emissions by afactor of two to five. Thus, engine displacement is also shown to be a
potentially important explanatory variable. Since engine displacement and net vehicle weight
are highly correlated, there islittle benefit to including both as criteriafor stratification of the
data. Engine displacement was selected as the criteriafor further model development, although
itislikely that similar results would be obtained if net vehicle weight were selected instead.

Aside from either engine displacement or vehicle weight, it is clear from the results of Tables 3-2
through 3-5 that odometer reading is a'so an important explanatory variable. The range of
cutpoints for odometer reading obtained from HBTR varies substantially from one pollutant to
another, and in some cases multiple cutpoints for odometer reading were obtained from the
analysis. However, for simplicity and for consistency with other models and analyses, asingle
cutpoint of 50,000 miles was selected. This cutpoint iswithin the range of values obtained from
HBTR.

The average modal emission rates, and the 95 percent confidence intervals for the averages, are
shown in Figure 3-10 for the 14 V SP modes stratified with respect to two engine displacement
categories and two odometer reading categories. The sample sizes for each mode for each strata
of engine displacement and odometer reading are shown in Figure 3-11.

For the lower engine displacement category of lessthan 3.5 liters, represented by Strata 1 and
Strata 3 in Figure 3-10, respectively, it istypically the case that the higher mileage vehicles have
higher emissions of HC and NO, only marginally higher emissions of CO, and comparable
emissions for CO,. Similarly, for the larger engine displacement category of greater than 3.5
liters, the higher mileage vehicles have substantially higher HC and NOy emissions, marginally
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higher CO emissions, and comparable CO, emissions for most modes. Thus, it is clearly
important to compare emissions for different odometer reading categories, especially for HC and
NOX.

When comparing engine displacement categories for a given odometer category, it istypically
the case that the larger engine size category has higher CO,, CO, HC, and NOy emissions than
the lower engine size category. However, there are some exceptions to thistrend. For example,
the lower mileage vehicles with larger engines tend to have lower NO, emissions for Modes 1
through 7 compared to any other strata, and for the higher VSP modes, the NO, emissions for the
larger engines are not substantially higher than that for the smaller engines for lower mileage
vehicles. However, among the higher mileage vehicles, those with larger engines have
substantially higher NO, emissions than those with smaller engines.

The fact that there are important differences in emissions based upon engine size and odometer
reading for many modes for each of the pollutants confirms that engine size and odometer
reading are useful explanatory variables. Therefore, the modal approach based upon 14 VSP
bins, each divided into four strata representing two engine size and two odometer reading
categories, was adopted for further analysis. This approach isreferred to as the “56-bin”
approach because of the 56 bins required (14 VSP bins x 2 engine displacement stratax 2
odometer reading strata = 56 binsin total).

3.2.3 Comparison of Modeling and | M 240 Datasets

In this section comparison of modal results based upon the calibration dataset and the IM 240
dataset is given based upon the preliminary V SP approach. For this purpose, the V SP bins that
were segregated via net weight are given. The IM240 data were not used in the initial calibration
activity because IM240 data are for a smaller range of V SP than the calibration data and because
of concern that there may be significant differencesin fuel characteristics. An objectivein
comparing the two data setsis to determine whether the results obtained based upon the
modeling data set are robust when the same binning criteria are applied to adifferent data set. In
order to make this comparison, it isimportant to first stratify both datasets as much as possible to
correct for variability in key factors. Based upon appropriate stratification, a more direct
comparison can be made between the data sets.

Figure 3-12 presents a comparison of modeling data and IM 240 data based upon V SP bins where
vehicle net weight isless than 4,0001b. For CO,, the results from the modeling data set and the
IM240 data are very similar, both in terms of general trends among all modes and in terms of
comparisons of mean emission rates for individual modes. The only exception is an apparent
anomaly for Mode 1. Aside from the anomaly, the comparison suggests that on average the
vehiclesin the two data sets have similar CO, emission rates, which also indicates that they have
similar fuel economy, since the vast majority of carbon in the fuel is emitted as CO,. For the
other three pollutants, there are similarities in average emission rates for the highest VSP modes,
such as Modes 10 to 14, especially for CO and HC emissions. For NOy, the emissions appear to
differ by afactor of approximately two for these modes. The similarities for the higher modes
for CO and HC may suggest that vehicles emit similarly for these two pollutants under
conditions of high power demand and, presumably, increased occurrence and frequency of
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enrichment. For al other modes, it is generally the case that the IM 240 database reveals higher
average emission rates than does the calibration database. This could be perhaps because there is
a higher proportion of high emitting vehicles, a different activity pattern of the vehicles, or
perhaps different fuel or ambient characteristics.

Figure 3-13 shows the comparison between the IM240 and the calibration data for net weight
greater than 4000lb. There are not many data points in several of the VSP bins for the IM240
data. For Modes 11 and 12 there are less than 20 data points and for Modes 13 and 14 there are
no data points. Thus, the results for Modes 11 and 12 are subject to considerable random
sampling error. Similar to the case for the lower weight vehicles, for CO, there are generally not
significant differences between average modal rates for the IM240 and calibration datasets. For
other pollutants, the IM 240 database tends to have higher average modal rates than the
calibration data, especially for the first seven modes.

Overall, these comparisons suggest important similarities between the modeling and the IM240
datasets. The genera trend of an increase in emissions from Modes 3 to 14 is common to all
pollutants and for both vehicle size categories. The results for CO, agree very well, especialy
for the smaller vehicle size category for which there is more IM240 data. The results for NOy
are comparable in terms of genera trend and relative variation in emissions among the modes,
but the average emissions are systematically higher for the IM240 data than for the modeling
data. For HC, the average modal emissions from the IM240 data are substantially higher than for
the modeling datafor Modes 1 through 7, but are statistically similar for the highest V SP modes.
For CO, the average modal emissions based upon the IM 240 data are higher than those based
upon the modeling data set for the lower VSP modes for both vehicle size categories. For the
smaller vehicle size category, for which there are more data, the CO emissions are similar for the
higher VSP modes. Since the IM240 is based upon potentially different fuel than the modeling
data set, it is possible that differencesin fuel may be important. However, it isalso likely that
the IM240 data set contains high emitting vehicles, and that the lower V SP modes may be more
susceptible to differences between normal and high emitting vehicles than the higher VSP
modes, which also typically represent higher emissions.

A more thorough comparison of different data sets is shown in Figures 3-14 through 3-17 for the
four engine displacement and odometer reading strata, respectively. The data sets compared
include the EPA on-board data, the EPA dynamometer data, NCHRP data, and the IM 240 data.
Thefirst three are the constituent data of the modeling database. Not al databases could be
compared for al four strata because of lack of datain some of the strata. Generally, the CO,
results are comparable among the databases, although it appears that the NCHRP database
represents higher average CO, emissions than does the IM 240 database for higher mileage
vehicles with larger engines. There tends to be more agreement regarding NO, emissions
estimates compared to CO and HC. Both the on-board and dynamometer datafrom EPA tend to
be similar. For example, for the smaller engines and lower mileage vehicles, the CO emissions
agree well for most of the modes, and for NOy the trends are very similar even though the
averages are similar primarily only for the lower VSP modes. The on-board hydrocarbon
emissions values tend to be much higher than those of the other data sets except for the high VSP
modes, athough the difference is not as pronounced for the larger engine size range. Even
though emissions are not similar when comparing some of the datasets, a likely reason for such
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differencesisadifferent mix of vehicles. The differences among the data sets suggest that it is
important to obtain a good representative sample of vehicles so that the combined database will
adequately capture and represent variability in emissions. The comparison also suggests that the
V SP definitions are useful in explaining variability in emissions within any of the data sets
individually.

3.3 NCSU Modal Approach: Idle, Acceleration, Deceleration, and Cruise

This approach is based on the NCSU modal definitions that are given in previous reports.
The vehicle operating conditions were categorized into NCSU modes, which areidle,
acceleration, deceleration and cruise. In order to refine the NCSU modes, HBTR was run for
each of the NCSU modes for al pollutants. When both operating and vehicle technol ogy
parameters were included in HBTR, VSP was typically selected as the most important
explanatory variable, except as noted below. In arefined HBTR analysis based upon only
operating parameters of speed, acceleration and VSP, VSP was again selected as the most
important explanatory variable in most cases.

It was found that for the acceleration mode, V SP is most powerful in explaining the variability in
the emission rate. For example, Figure 3-18 shows the HBTR results for the accel eration mode
for NO. Thefirst cut point is VSP, and it accounts for alarge portion of the reduction of
deviance. VSP also is used for some additional stratification, along with speed. However, the
portion of deviance explained by speed is very small compared to that explained by VSP. Thus,
VSPisidentified as the single most important variable to further improve the NCSU
Acceleration mode. Therefore, data within the accel eration mode were subdivided into addition
modes based upon V SP cut-offs. The cut-offs were selected based upon the same criteria as
described for the VSP approach: (1) ideally, each newly defined mode should have a
significantly different average emission rate compared to other modes; and (2) each mode should
account for not more than approximately 10 percent of the total emissions of asingle pollutant.
Based upon these criteria, six modes were defined, as summarized in Table 3-6.

For the NCSU Cruise mode, it was found that V SP and Speed are both important variabl es that
are picked by HBTR. For example, Figure 3-19 shows the regression tree cruise mode results for
NO. Thedataarefirst stratified with respect to VSP, resulting in alarge reduction in deviance,
asindicated by the vertical length of the branches under the first split. For the high VVSP data,
the data are further stratified into smaller V SP categories, suggesting that VSP aloneis useful in
explaining emissions as long as the VSP is above a cut-off (in the example, the cut-off is
approximately VSP=12). For the lower V SP data, speed was found to be the most important
variable for further stratification of the data. Therefore, in defining new modes within the cruise
mode, consideration was giving to using speed to stratify data for low V SP cases, and VSP alone
was used to discriminate among the high VSP data. The specific criteriafor the bins shown in
Table 3-6 were devel oped based upon judgment after reviewing HBTR results for all pollutants.
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Figure 3-18: Unsupervised HBTR Results for NCSU Acceleration Mode for NO, Emissions
(9/sec).
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Figure 3-19. Unsupervised HBTR Results for NCSU Cruise Mode for NOx Emissions (g/sec).
Notes for Figures 3-17 and 3-18: The vertical distance of each branch indicates the proportional

explanatory benefit of each particular split, and the numbers at the bottom of the branches are the
average emission rates for the stratified data
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Table 3-6. Definition of NCSU Driving Modes

ID Definition

1 NCSU ldle

3 NCSU Deceleration

21 NCSU Acceleration & VSP<8

22 NCSU Acceleration & 8<VSP<15
23 NCSU Acceleration & 15<VSP<25
24 NCSU Acceleration & 25<VSP<33
25 NCSU Acceleration & 33<VSP<40
26 NCSU Acceleration & VSP>40

41 NCSU Cruise & VSP<I12 and Speed<30
42 NCSU Cruise & VSP<12 and 30<Speed<55
43 NCSU Cruise & VSP<I12 and Speed>55
44 NCSU Cruise & 12<VSP<16

45 NCSU Cruise & 16<VSP<22

46 NCSU Cruise & VSP>22
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For the deceleration mode, speed was the most important explanatory variable picked by HBTR
analysis. However, considering that the total emission contributed by the deceleration mode is
less than 10 percent for all four of the pollutants, it was deemed not necessary to further divide
deceleration into submodes. The idle mode was also not further refined, since idle contributes
only asmall portion of total emissions.

In total, 14 modes were identified, including one idle mode, one decel eration mode, six
acceleration modes, and six cruise modes. The definition of these modesis given in Table 3-6.
The time spent in each of the 14 modes, and the emissions contributed by these 14 modes is
shown in Figure 3-20. The average emission values for each of the 14 modes for the four
pollutants are given in Figure 3-21,and the sample size for each mode is shown in Figure 3-22.
Figure 3-20 indicates that CO emissions were the binding consideration in determining the need
for six acceleration modes. Specifically, the high V SP acceleration modes (i.e. Modes 24, 25,
and 26) each represent approximately 10 percent of the total CO emissions in the database, but a
far smaller percentage of emissions of the other three pollutants. On the other hand, NOy
emissions were the binding constraint on determining the need for six cruise bins, since NOy
contributes approximately 10 percent to total NOy emissions for the high V SP cruise modes
(Modes 44, 45, and 46) and other pollutants contribute less than this percentage to their
respective totals.

The comparison of average emission ratesin Figure 3-21 reveals that the lowest emission rates
for agiven pollutant typically occur for idle, deceleration, and low speed cruising. Ascruising
speed increases for low VSP values, as represented by Modes 41, 42, and 43, the average
emission rate increases for al pollutants. High VSP cruising results in higher average emissions
than low VSP cruising. These results tend to confirm intuitive a priori assumptions that
emissions during cruising will typically be higher at higher speeds or under conditions of higher
engineload. The ability to distinguish emissions for different types of cruising illustrates the
intuitive appeal of this particular modal binning approach: it isrelatively easy to explain the
relationship between vehicle activity and emissions with this approach.

For the acceleration mode, emissions for any of the pollutants increase with VSP, asillustrated
by comparing Modes 21, 22, 23, 24, 25, and 26. For CO and HC, there is asignificant increase
in emissions when comparing one mode with the next mode that has higher VSP. For both NOy
and CO, emissions, the average emissions increase substantially with VVSP for the lower VSP
modes (i.e. Modes 21, 22, 23). For Modes 24, 25, and 26, there are small increases in average
emissions as VSP increases. These results suggest that CO and HC emissions are very sensitive
to VV SP throughout the entire range of acceleration events, whereas NO and CO, emissions are
sensitive to lower ranges of V SP of less than about 25. Above V SP=25, NO, and CO, emissions
are less sensitive to VSP. Thus, it appears to be the case that once a V SP threshold is reached,
NOy and CO, emissions will not change much, but that CO and HC emission rates are more
sensitive to high (or perhaps aggressive) accelerations.
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Figure 3-22. Sample Sizes for Each NCSU Mode for Each Odometer Reading and Engine Displacement Strata.
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After defining the 14 modes shown in Table 3-6, unsupervised HBTR was applied to data for
each pollutant and each mode to identify vehicle characteristics useful in further explaining the
variability in the emission rate. The vehicle characteristics considered included net weight,
number of cylinders, odometer readings and engine displacement. Tables 3-7 through 3-10
summarize which variable was chosen for the first, second, and third cut-pointsin the regression
tree and also display the numerical values of the cut-offs.

There is variation regarding which variables were selected for the first stratification of the data,
implying that the choice of a preferred explanatory variable is conditional on the mode.
However, since the objective of thiswork is to develop modes that are both technically rigorous
but also sufficiently simple for practical application, it is preferred to identify one explanatory
variable that works well for al modes. In reviewing the results of Tables 3-7 through 3-10, itis
apparent that the odometer reading is typically the most frequently selected variable for use in
thefirst stratification of the data. The second most frequently selected variable for the first cut-
point is the net vehicle weight. Odometer reading and net vehicle weight are also frequently
selected as the basis for the second and third cut-points. These results suggest that both
odometer reading and net vehicle weight are important variables. Therefore, both variables were
selected as the basis for further refinement of the modal definitions.

The selection of specific cutpoint values for odometer reading and net vehicle weight was made
based upon judgment. The specific cutoffs from the HBTR analysis are different for different
modes and pollutants. However, in order to keep the modal definitions as simple as possible,
only one representative cutpoint was selected for each variable. The cutpoints for odometer
readings obtained from HBTR range from typically 12,000 to 80,000 miles. However, many
values are within arange of plus or minus 15,000 miles compared to a chosen cutpoint of 50,000
miles. The cutpoint of 50,000 miles was selected because it is representative of results from the
statistical analysis and is consistent with previous cutpoints used in other modeling work. For
net vehicle weight, a representative cutpoint of 3,500 pounds was selected, which is
representative of many of the cutpointsin the range of 3,300 to 3,800 pounds identified in the
statistical analysis.

Using the same modal definitions as given in Table 3-6, the data were further binned into four
categories.

Net Weight <= 3,500 pounds AND Odometer Reading <= 50,000 miles
Net Weight <= 3,500 pounds AND Odometer Reading > 50,000 miles
Net Weight > 3,500 pounds AND Odometer Reading <= 50,000 miles
Net Weight > 3,500 pounds AND Odometer Reading > 50,000 miles

A comparison of average modal emission rates for these four categoriesis given in Figures 3-23,
3-24, 3-25, and 3-26 for CO, HC, NOy, and CO, emissions, respectively. The figures suggest
that at least for some pollutant/mode combinations that average emissions for these four
categories are statistically significantly different from each other (e.g., NO emissions for
acceleration modes 21, 22, 23, 24, and 25). In some cases, there is more sensitivity to odometer
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Table 3-7. Unsupervised HTBR Regression Tree Results for CO Emissions Based Upon the

NCSU Modal Approach.

Mode 1¥ Cut point 2" Cut point 3 Cut point
1 (Idle) Net 3328 O 79901 Net 3482
3 (Deceleration) E 4.1 N5 017783
21 (Acceleration) O 75432 0 15210 0 12325
22 0O 66163 015210

23 043433 0 15251 0O 71964
24 E39

25 Net 3587

26 O 43433

41 (Cruise) 0 15210 0 12798 0 75432
42 0 15215 0 12789 0O 56637
43 E 3.45 N5 O 20892
44 E 3.45 N5 Net 2862
45 Net 3659 N5

46 0O 79022 050177

Table 3-8. Unsupervised HTBR Regression Tree Results for NO, Emissions Based Upon the

NCSU Modal Approach.

Mode 1% Cut point 2" Cut point 3 Cut point
1(idie) N5 0 60158 E 3.45

3 (Deceleration) 08785 E 345
21 (Acceleration) O 58057 O 29057 E 275
22 0O 66163 O 38353 O 45900
23 063341 0 22195 043433
24 O 58560 0 12800 Net 3486
25 O 58057 Net 2813 E23

26 O 58057 Net 2550

41 (Cruise) 0 71964 E0.75 Net 3754
42 Net 3611 0O 57695 E 4.45
43 017220 E 3.05

44 017220 0 11493 Net 2531
45 O 38353 E3 0 83491
46 0 83490 061024

Note: “Net” means “Net Vehicle Weight (Ibs)”, “O” means “ Odometer Reading (miles)”,
“N” means “Number of cylinders’, “E” means “Engine Displacement (liters)”. The number

following the variables is the value of the cut point.
Results are not shown in cases where sample size was small
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Table 3-9. Unsupervised HTBR Regression Tree Results for HC Emissions Based Upon the

NCSU Modal Approach.

Mode 1¥ Cut point 2" Cut point 3 Cut point
1 (Idle) 0O 79022 O 48626 098129
3 (Deceleration) O 74867 ES5.3 Net 3613
21 (Acceleration) 0O 79022 0 37236 0O 48465
22 O 74867 0 37238 O 48465
23 O 77495 0 37326

24 0 43437 Net 2586

25 043433 Net 2967

26 0 45900 E 275

41 (Cruise) 0 79022 E53 0 10110
42 O 77495 Net 3611 E4.9
43 O 77495 0 29949

44 O 77495 0O 79022

45 O 77495 0 26082

46 Net 4375 043433 0O 90660

Table 3-10. Unsupervised HTBR Regression Tree Results for CO, Emissions Based Upon the

NCSU Modal Approach.

Mode 1% Cut point 2" Cut point 3" Cut point
1(1dle) N5 Net 2454

3 (Deceleration) Net 3264 O 25347 E 3.45
21 (Acceleration) 043433 E 3.45 N5

22 043433 E 155 Net 3284
23 Net 3724 0O 44035 Net 3568
24 Net 3724 E 1.95 Net 2688
25 Net 3724 E21 0O 22358
26 E21 O 55582

41 (Cruise) Net 3034 Net 2246 =

42 Net 3551 Net 2788 E25

43 E 245 Net 2983 Net 3626
44 Net 3724 E 195 0O 45900
45 Net 3724 0 45900 0O 37236
46 Net 3724 Net 2446

Note: “Net” means “Net Vehicle Weight (1bs)”, “O” means “Odometer Reading (miles)”,
“N” means “Number of cylinders’, “E” means “Engine Displacement (liters)”. The number

following the variablesis the value of the cut point.
Results are not shown in cases where sample size was small
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Figure 3-23. Average CO Emissions (g/sec) For the NCSU Idle, Deceleration, Acceleration, and Cruise Modes By Vehicle Weight
and Odometer Reading Based Upon the Modeling Database.
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51



b7

A1) Y

V2224 ..0e;;ziiiyiii;yii
TN

7,
T TT'T Y

b 7777777777777
A i s

V7777777777777 T
A I]II;THh-haa2as,sy

V77

o
o o o
o o o o
o o o o
Lo o o o
1] Ln n o
K I \vv n
o) v ) A
o 2 o g
g © g o
o 1S o e
© o © o
O ©T O ©T
s ©O & ©
o o o o
Lo o n o
o Ln o Ln
1] o I o
D A
) = = =
D> o o D
(] () () ()
W_ W_ W_ W_
® © © o
=2 = = =
B B8 N #
C
S
3
[
Sg 8
B8 2
o< O
D ...
L PFo O
SAaa Y
— A4
HdAaNY
vood B
ST O
0606 0d
====

2.IHHHHHTITHY

7277

077777
SLHLMMLINIHHHHHINIHHHHHHHHHH T THTHing

W77
A I;IhHne

V:z;;:;;zi;:;;z;z;z;ii;22?2d????ze:zzii;:: 2l
A2 T TR RNm

N7,
A I THHITY

/7777777777777
A TN

2?77,
Al

V77777
HHINIMMMMMMMIMMOMY

100

I
—
o

10ISSIWa 20D

46

45

44

43

42

41

26

25

24

23

22

21

NCSU_Mode

Figure 3-26. Average CO, Emissions (g/sec) For the NCSU Idle, Deceleration, Acceleration, and Cruise Modes By Vehicle Weight
and Odometer Reading Based Upon the Modeling Database.
52



reading than vehicle weight. For example, for HC cruise modes, vehicles with higher odometer
readings have higher emissions than those with lower odometer readings, and average emissions
for agiven odometer reading are similar for the two net weight categories. In contrast, for NOy
emissions, it appears that older higher mileage vehicles generally have higher modal emission
rates than for the other three categories. However, there are also many specific comparisons that
are not statistically significantly different from each other. For example, for CO emissions the
average acceleration modal emissions rates for higher mileage vehicles are similar regardless of
vehicle weight. Thus, athough the specific trends are different for different pollutants, and
although in some cases there are not significant differences among the two or more of the four
categories for a given pollutant/mode, the results suggest that there are observable differences for
many pollutant/mode combinations. Therefore, these categories may be useful in explaining
variability in emissions.

34  Selection of a Binning M ethod

The VSP and NCSU binning approaches were compared and evaluated. The criteriafor
evaluating the two approaches included the utility of each method to explain variability in
emissions, the ease of development of the bins, the interpretation of the bins, the ability to
explain the approach to model developers and users, and design issues for future model
development. The choice of a preferred binning approach was made based upon the application
of both approaches to the same data sets.

A comparison of predictions made with both the NCSU-based and V SP-based approaches was
developed by using both approaches to predict the average emissions for driving cyclesin the
modeling database for which there were ten or more vehicles. The comparison isshownin
Figure 3-27. The average prediction and the 95 percent confidence interval for the average
prediction is shown for each method and for each driving cycle. The 95 percent confidence
intervals of the mean predictions overlap for al of the cycles and for all pollutants, indicating
that there is no statistically significant difference in predictions for the two methods.

The development of the binsis similar for both methods. The interpretation of binsis different
for the two methods, with the NCSU approach being more intuitive to alay person and the VSP
approach being consistent with approaches used in a variety of analyses of vehicle emissions.
The NCSU approach produces some bins that have similar average emission rates, even though
they represent different activities. For example, the lower emission acceleration and cruise
modes have similar emissions. Although neither method clearly stands out when compared to
each other, the V SP approach was selected as the basis for further analysis.
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4 SELECTION OF AN AVERAGING TIME FOR MODEL DEVELOPMENT

The objective of this chapter isto evaluate the potential benefits of working with data that have
been averaged over time when developing bins/modes. The effect of data smoothing on binning
was determined by comparing the bins devel oped with data averaged over one second to those of
longer periods. For this purpose consecutive averaging of 5 and 10 seconds was utilized and
compared with each other and with the use of 1 second data.

4.1  Methodological Approach

As part of the shootout, NCSU found that there is autocorrelation in the second-by-second on-
board tailpipe emissions data (Frey et al., 2002). In most cases, the autocorrelation was found to
be represented by alag of up to four or five seconds. Therefore, an averaging time of five
seconds should be sufficient to decrease the autocorrelation in the data by smoothing with
consecutive averaging. However, to provide some margin for variability in the autocorrelation,
an averaging time of 10 seconds was also evaluated. It was hypothesized that this longer
averaging time should further smooth the data and remove some of the high frequency variability
in the data

In order to determine 5 and 10 second averages based upon the second-by-second data, a
program was written in Visual Basic. This program estimated 5 and 10 second consecutive
averages for emissions, aswell as vehicle activity data, such as vehicle speed and acceleration.
In addition to estimating average vehicle activity during each activity period, peak values of
vehicle activity were estimated. For example, it was hypothesized that emissions are more
sensitive to peak accelerations or peak V SP within an averaging period than they would be to
average acceleration or average V SP.

The use of averaging times requires reconsideration of the approach for developing bins. For
example, data can be binned by average VSP or by peak V SP during the 5 or 10 second
averaging time. Itispossible, for example, for a 10 second period to have an average
acceleration of, say, only 1 mph/sec but to have a peak acceleration of, say, 5 mph/sec that took
place for a short duration. The short duration, high acceleration that took place within the 10
second averaging period may in fact be associated with the largest share of emissions that took
place during the averaging time. Therefore, it may be more effective to use the peak values of
key variables, such asVVSP or power demand, as a basis for binning the data, rather than using
average values of these.

The basis for selection of a preferred averaging time was based upon the presence of statistically
significant differences in average emissions among modal bins and explanatory power of the
overall modal model. In addition, approaches that resulted in less variability in emissions within
abin would typically be preferred over approaches that have more variability in emissions within
abin.

4.2 Resultsfor Fiveand Ten Second Averaging Times

The assessment of different averaging times was performed for the V SP-based approach
identified as the preferred modeling approach in Chapter 3. For the five and ten second-averaged
data, unsupervised HBTR was applied to the data sets for each pollutant. The variables used in
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the regression tree include mean speed, maximum speed, standard deviation of the speed, mean
accel eration, maximum accel eration, standard deviation of the acceleration, mean VSP,
maximum V SP, standard deviation of VSP, mean power, maximum power and standard
deviation of power. It should be noted that there is positive dependence between V SP and power.

Table 4-1 summarizes the variables that were picked during the unsupervised application of
HBTR for the first three cut points. Maximum V SP and maximum power were frequently
selected as the most important variables. Since V SP includes power as part of the estimate, these
two variables are closely related to each other. Therefore, for ssimplicity and consistency with
the one second averaging time analysis, V SP was chosen as the representative variable for
developing modes, and maximum V SP was selected as the specific criteriato usein defining
modes. The approach for defining modes using a supervised technique is the same as previously
described, based upon seeking modes with average emission rates that differ from each other and
that do not contribute more than about 10 percent to total emissions for any individual pollutant.
A total of 14 modes were defined for both 5 and 10 second-averaged data, as given in Tables 4-2
and 4-3, respectively. The time spent in each mode and the percentage of total database
emissions contributed by each mode for 5 and 10 second-averaged data are given in Figures 4-1
and 4-3, respectively. Similarly, the average modal emission rates for each mode for all four
pollutants are given in Figure 4-2 for the 5-second average data and in Figure 4-4 for the 10-
second average data.

The sample sizes for the 1-second, 5-second, and 10-second averaging times for each of the 14
modes are compared in Figure 4-5. Because the modal definitions are different for each of the
three approaches, it is not expected that there is a proportional distribution of data among the
modes when comparing the approaches. However, it is the case that the total sample size
summed over all 14 modes for the 5-second averaging time is approximately one-fifth that of the
1-second averaging time, and similarly for the 10-second averaging time the overall sample size
is approximately one-tenth that of the 1-second averaging time.

Table 4-1. Key Explanatory Variablesfor CO, NO,, HC, and CO, Emissions (g/sec) Identified
Using Unsupervised HBTR for Five and Ten Second-Averaged Data

1% Cut Point 2" Cut Point 3“ Cut Point
5 Seconds Average for CO Maximum Power Maximum V SP Mean VSP
10 Seconds Average for CO M aximum Power Maximum VSP | Maximum Speed
5 Seconds Average for NOy Maximum VSP Maximum V SP Mean Power
10 Seconds Average for NOy Mean VSP Maximum VSP | Maximum Power
5 Seconds Average for HC M aximum Power Maximum VSP | Maximum Power
10 Seconds Average for HC Maximum Power Maximum V SP Mean Power
5 Seconds Average for CO, Mean VSP Maximum V SP Mean VSP
10 Seconds Average for CO, Mean VSP Maximum V SP Mean VSP
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Table 4-2. Maximum V SP-Based Mode Definitions For Five Second-Averaged Data

ID Definition

MaxVSP <0

0<MaxVSP <2

2<MaxVSP <6

6 <MaxVSP <9

9<MaxVSP <12

12 <MaxVSP <15

15<MaxVSP <18

18 <MaxVSP <21

21 < MaxVSP <25

25 < MaxVSP <29

29 < MaxVSP <34

BR e
KIEIB|lo|lo|~Njo|uolsw[N -

34 < MaxVSP <38

[y
w

38 < MaxVSP <42

'_\
>

MaxVSP > 42

Table 4-3. Maximum V SP-Based Mode Definitions For Ten Second-Averaged Data

ID Definition

1 MaxVSP< 1

2 1<MaxVSP <6
3 6 <MaxVSP <9
4 9<MaxVSP <12
5 12 <MaxVSP < 15
6 15<MaxVSP < 18
7 18 <MaxVSP <21
8 21 <MaxVSP <24
9 24 < MaxVSP <27
10 27 <MaxVSP <31
11 31 <MaxVSP <35
12 35<MaxVSP <39
13 39 <MaxVSP <43
14 MaxV SP > 43
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The results share many qualitative similarities compared to the analysis of 1-second data shown
previously. For example, the contribution to total CO emissionsislarger for the high maximum
V SP modes (e.g., Modes 10, 11, 12, 13, and 14) than the contribution to total emissions of other
pollutants. For modes that are based only upon positive maximum V SP, the average emission
rates increase from one mode to the next as average V SP increases, for al pollutants and for both
averaging times. The range of variability when comparing the mode with the largest average
emission rate to that with the lowest average emission rate is similar for all of the averaging
times for agiven pollutant. Some of the differences that are apparent as the averaging timeis
increased is that there is less specific treatment of negative V SP cases and that the average
emissions for Mode 14 for either the 5-second or 10-second averaging times are typicaly the
same as or perhaps even alittle less than that for Mode 13. The lack of a monotonic increase
when comparing Modes 13 and 14 could be attributable in part to small sample sizes for these
two modes, but also could be attributable to the effects of averaging —for example, perhaps there
is less homogeneity in the data of Mode 14 than for other modes.

4.3  Evaluation of Different Averaging Timesand Recommendations

Predicted versus actual emissions for individual trips/cycles in the modeling database were
evaluated for each of the three averaging times as a consideration to help in selecting a preferred
averaging time. For that purpose predictions for Modeling dataset are compared for the three
averaging time methods. As seen in Figure 4-6, predictions with all three averaging methods are
similar. The 95 percent confidence intervals overlap for aimost al of the cycles, for all
pollutants. Overall, al three averaging times yield qualitatively similar results. Thus, it is not
readily evident that oneis clearly superior to another.

The five and ten second averaging times were found to offer no advantage over the one second
averaging timein terms of predictive ability with respect to total emissionsfor atrip. Becauseit
iseasier to work directly with the one second average data, the one second averaging time
approach was selected.
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5 COMPARISON OF EMISSION FACTOR APPROACHESAND EVALUATION OF
THE ROLE OF REMOTE SENSING DATA

In this chapter, two different approaches to devel oping emission factors are compared and
evaluated. The objective of this chapter isto develop arecommendation for a preferred emission
factor approach, in response to the fifth key question of: what emission factor units should be
used?. The two approaches evaluated include mass per time emission factors (e.g., gram/second)
and the ratio of emissions of CO, HC, and NO with respect to CO,. The latter was based upon
evaluation of the molar ratio of CO/CO,, HC/CO,, and NO,/CO,. Since most of the carbon in
the fuel is emitted in the form of CO,, the ratio approach is approximately equivaent to a gram
per gallon emission factor approach. Previous studies by others (e.g,. Singer and Harley, 1996)
have touted the potential benefits of afuel-based approach to development of area-wide emission
inventories. However, such inventories are macro-scale in nature and would require a
representative average gram per gallon emission factor combined with good estimates of total
areawide fuel consumption. For meso-scale or micro-scale predictions, it will be necessary to
estimate emissions at amore local scale. In such instances, an understanding of the influence of
different driving modes on emission ratios s critically important. Furthermore, in order to
predict mass emissions using emission ratios, it is necessary to be able to predict mass per time
CO; emission rates or mass per time fuel consumption.

Since one motivation for considering emission factors is potentially to facilitate accommodation
of remote sensing data, this chapter also deals with an evaluation of the relevance of remote
sensing data for model development. The evaluation is based upon comparison of modal
emission rates cal cul ated based upon remote sensing data and compared with those calculated
from on-board measurements and dynamometer tests. Therefore, this chapter also addresses the
motivating question: What is the potentia role and feasibility of incorporating RSD into the
conceptual modeling approach?

5.1  Background Regarding Emission Factor Units

Some investigators hypothesize that gram/gallon emission factors have less inherent variability
than do mass per time or mass per distance emission factors. NCSU is currently conducting an
independent study of this hypothesis, based upon analysis of on-board second-by-second data
collected as part of aprevious study (Frey et al., 2001). Our preliminary findings do not fully
support the hypothesis. As an example, we illustrate results for modal analysis of gram per
second and gram per gallon emission factors for NO for a1999 Ford Taurusin Figure 5-1. The
gram per gallon emission factors are approximately equivalent to the ratio of NO to CO,
emissions, since CO, emissions are linearly proportional to fuel consumption to avery good
approximation. In thiscase, thereis significant variability in emissions among the four driving
modes considered regardless of the emission factor units employed. For example, as shown in
Figure 5-1, the average acceleration emission rates are approximately a factor of 10 or more
greater than average idle emission rates for both emission factor units. Thus, it isclearly not the
case in thisinstance that emission ratios or g/gallon
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Figure 5-1. Average Modal Rates for Absolute and Normalized NO Emissions for a 1999 Ford
Taurus Driven on Chapel Hill Road in Cary, NC (Source: NCSU)

emission factors have substantially less variability from one mode to another than do mass per
time emission factors. The results tend to vary for different vehicles and for different pollutants
based upon our preliminary study. For example, the g/gallon emission factors for HC may be
more nearly similar for different driving modes than the g/gallon emission factors for CO or NO.
CO; emissions are almost constant regardless of the driving mode; however, thisis because the
vast majority of carbon in the fuel is emitted as CO,. Thus, ag CO,/gallon emission factor is
essentially a surrogate for the carbon content of the fuel.

Even if g/gallon emission factors are the same for different driving modes, the fuel consumption
rateisnot. Figure 5-2 illustrates the variability in fuel consumption rate on a mass per time basis
asafunction of different driving modes. For example, the average fuel consumption rate during
acceleration mode is approximately afactor of five times greater than that during the idle mode,
and the average differencesin fuel consumption rate among the modes are statistically
significant.

5.2  Background Regarding Remote Sensing Data

There are two critically important limitations of RSD data that must be acknowledged: (1) RSD
data are for avery short averaging time of approximately 1 second, with no information
regarding vehicle activity and emissions either before or after the “snapshot” of the
measurement; and (2) RSD data support estimation of relative emission rates (e.g., ratios of
HC/CO, and NO/CO; or similar), or fuel-based emission rates (e.g., g/gallon), but cannot
directly provide g/mile or g/sec emission rates. Secondly, one would need to estimate fuel
consumption or CO, emissions on amass per time basisin order to convert all other g/gallon or
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ratio emission estimates to amass per time basis. RSD data will not provide a basis for
estimating CO, emissions on a mass per time basis or for estimating fuel economy in order to
estimate gallon/sec fuel consumption.

Before combining RSD data with second-by-second data, it isfirst important to determine
whether RSD data and the second-by-second data are sufficiently consistent that a combination
of the two would be meaningful. This comparison ispossible if the second-by-second data are
converted to the same basis asthe RSD data. Therefore, as part of the evaluation of RSD data,
modal emission rates were cal culated based upon RSD data using the modal definitions that were
applied to the modeling dataset, but taking into account the inability to stratify RSD data with
respect to odometer reading. We hypothesize that relative differencesin average emission rates
among the RSD-derived estimates should be similar to those observed based upon the second-
by-second data sources. If not, then there may be some significant discrepancy in the data
sources that would caution against combining the RSD datainto the model devel opment process.

A key limitation of RSD dataisthat it is essentially a one second (or shorter) snapshot of
emissions at a specific location. Therefore, there is no vehicle history available from which to
estimate modal emission rates for an averaging time greater than one second. The range of inter-
vehicle variability and the range of uncertainty in average modal emissions estimated based upon
RSD datawere also evaluated. For example, if the RSD data were excessively noisy (high
variability) then it may not be useful as a supplement to other data sourcesin developing the
modal.

The appropriateness of using RSD data for devel oping the model depends on what type of
weighting schemeis preferable. If atime-based weighting schemeis selected, then RSD data
will likely contribute only modestly to the estimation of average emissions within a bin, because
of the short duration of the RSD measurements. If a vehicle weighted approach is selected, then
RSD data will contribute disproportionately to the estimation of average emissions, becauseit is
possible to obtain measurements on thousands of vehicles per day using RSDs, but each
measurement is for less than one second (typically).

The two emission factor approaches were compared and evaluated based upon the following
criteriac (1) which approach resultsin a“simpler” model; (2) which approach is best ableto
explain variability in emissions; (3) which approach has the least amount of residual error; (4)
which approach can best support model verification or validation; and (5) which approach offers
the most flexibility. The comparison of mass per time factors versus ratios was performed for
both the NCSU and V SP based approaches, and results for both approaches are presented. In
addition, the modal emission rates of both approaches were compared with those estimated from
RSD data. Because RSD data are based upon measurements made during less than one second,
the comparison of mass per time emission factors and emission ratios was done based only upon
the one second averaging time for the modeling database.
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Figure 5-2. Average Modal Rates for Absolute Fuel Consumption for 1999 Ford Taurus Driven
on Chapel Hill Road (Source: NCSU)

5.3  Comparison of Emission Factorsand Emission Ratios Based Upon the NCSU M odal
Approach

The NCSU modal definitions were applied to emission ratios calculated from the modeling
dataset. The results when applied to mass per time emission factors were previousy described.
To compare with remote sensing data, the emission rates in the modeling dataset were converted
to molar ratios with respect to CO,. Specifically, the emission rate in g/sec was divided by the
molecule weight of the pollutant to get the emission rate in mole/sec, and was further divided by
the CO, emission rate in mole/sec. The molecular weight used for the HC emission rateis
assumed to be as hexane (CgH14). Figure 5-3 gives the comparison between the modeling dataset
and remote sensing data for each NCSU mode for each pollutant.
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The average emission rates for the NCSU modal bins have a different sensitivity when evaluated
in terms of emission ratios compared to the previously described analysisin terms of grams per
second. For example, for the CO/COs ratio, thereis relatively little sensitivity to the mode
definitions applied to the calibration data set when comparing the decel eration and cruise modes.
Idle is not shown because idle cannot be observed with the RSD database. However, for the
acceleration modes, and particularly Modes 23, 24, 25, and 26, there is a substantial increasein
the CO/CO; ratio as V'SP increases. Similar results are observed for the HC/CO; ratios based
upon the calibration data set. However, for the NO/CO; ratio, the results for the calibration data
set are qualitatively similar to those obtained for the gram/second emission factor units.
Specificaly, emissions for deceleration (Mode 3) are comparatively low. Within the
acceleration mode, the emissions ratio increases as V SP increases, when comparing Modes 21
through 26. For the cruise mode, the emissions ratio increases with average speed among the
three low V SP modes (Modes 41, 42, and 43) and with V SP for the three high V SP modes
(Modes 44, 45, and 46). The results obtained with the second-by-second data help set
expectations for trends that would be expected in the RSD data set.

The results from analysis of the RSD data are qualitatively different from those obtained with the
calibration database, in at least two key respects. First, the trend for inter-modal variability in
emissionsis very different for the RSD data than for the calibration database for both NO, and
HC. Specificaly, there is much less variability when comparing the lowest and highest average
modal rates and the trends when comparing modes are either not as strong or are not apparent at
al. For example, for the RSD HC/CO; ratios, thereis little apparent sensitivity to VSP among
the acceleration modes, in contrast to the observation based upon the calibration database. The
average NO,/CO, ratios estimated based upon RSD data are less sensitive to changesin VSP for
the acceleration modes, and to changesin speed and V SP for the cruise modes, than the
calibration data. Because RSDs measure HC using NDIR, it may be the case that the RSD
measurements are not responding to total HC and that the ratio of measurable HC to total HC
might vary depending on the mode. For the NO,/COs ratio, there has been discussion in the
literature and el sewhere to the effect that RSDs have less sensitivity to NOy than to
measurements for other pollutants; however, it is not known if thisis an important factor in this
particular case.

The trends for the CO/CO;, ratio from the RSD data are more comparabl e to those from the
calibration data compared to the other two pollutants; however, the magnitude of the average
COICO, emission estimates for the three highest V SP acceleration modes is substantially less
than that for calibration data set. This might be because of differencesin the vehicle mix;
however, the RSD data used for this analysisis based upon Tier 1 vehicles, asisthe calibration
dataset. Itispossible, perhaps, that thereis adifferent mix of mileage accumulation or other
factors; however, since the average emission rates differ by afactor of two, and each averageis
based upon afairly large sample size, it could be the case that there are differencesin the
estimates because of differences in the measurement techniques. It is possible that the RSD data
may contain a better representation of high emitting vehicles, or of high emissions episodes for
normal emitting vehicles, than does the modeling data set. These questions are revisited in the
next sections based upon comparison of emission ratios for the V SP-based approach using both
the modeling data set and the RSD data.
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54  Comparison of Emission Factorsand Emission Ratios Based Upon the VSP M odal
Approach

Emission ratios were estimated for the 14 V SP modes based upon the modeling data set and were
compared with modal emission ratios estimated from the RSD data, as shown in Figure 5-4.

The results for the emission ratios estimated based upon the modeling data set indicate that for
the CO/CO; ratio there is relatively little sensitivity of the ratios for the low V SP modes,
including Modes 1 through 10. However, for the high VSP modes, the emission ratios increase
substantialy with VSP. An amost similar trend is observed for the HC/CO, ratio, with the
exception that Mode 3 has a higher average emission rate than the other low VSP modes. For
the NO,/CO; ratio, the relative trend among the average emission ratios for each mode isvery
similar to that observed for the mass per time emission rates. For example, there is a monotonic
increase in the average NO,/CO, emissions ratio from Mode 3 through Mode 14. These results
illustrate that in order to capture variability in NO, emissions with amodel, it would be
necessary to retain approximately the same number of modes as for the mass per time emission
factor approach. Because the implementation of a moda modeling approach is simpler from a
software design and data management perspective if the same modal definitions are used for all
pollutants, the ability to capture variability in NOy emissions would be binding constraint
regarding alower bound for the number of modes needed. Thus, even though it might be
possible to have far fewer than 14 modes to adequately capture variability in CO and HC
emissions, areduction in the number of modes applied to all pollutants would result in loss of
explanatory power for NO.

The comparison of RSD data with the results from the modeling data set illustrates important
similarities and important differences. The key similarities are the following: (1) the average
COICO, ratios are relatively small for the 10 lowest V SP modes; (2) the average CO/CO ratios
increase monotonically for the four highest VSP modes; and (3) the average emission ratios
agree well between the two data sources for both NO,/CO, and HC/CO, for Modes 12 and 13.
The key differences are: (1) thereis generally less variability among the average modal emission
ratios for the RSD data than for the modeling data set; (2) the RSD data produces lower average
ratios for CO/CO; for Modes 13 and 14; and (3) the RSD data produces much higher average
ratio estimates for both HC/CO, and NO,/CO, for the low VSP modes. These differences could
be because of a different combination of fuel, vehicle characteristics, and odometer reading
(which is unobservable with RSD technology) between the two data sets. Presumably, the RSD
would contain better representation of on-road high emitters, and possibly such vehicleslead to
higher emissions for the lower VSP modes more so than for the higher VSP modes. Thus, at
best, the comparison isinclusive. However, it is not possible to stratify the RSD by odometer
reading, which complicates the ability to refine the comparison.

In the next sections, the activity underlying the RSD data is compared to that of the modeling

data set and of the IM240 data set to obtain additional insights regarding key differences between
the RSD data and the modeling data set.
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55  Comparison of Variability in Emission Ratiosfor Selected VSP Binsfor the
Modeling and RSD Data Sets

In this section, the variability in emission ratios for selected modes is compared for both the
modeling and RSD data sets in order to evaluate the characteristics of the RSD data. Since
odometer reading is not given in the remote sensing data, it is not possible to stratify the data by
odometer reading. However, engine displacement is available in the RSD data. Therefore, the
comparison is based upon the 14 VV SP modes stratified by two engine displacement categories
with acutpoint of 3.5 liters. Examples are shown here for three selected modes based upon
engine displacements of less than or equal to 3.5 liters.

For VSP Mode 1, a comparison is shown in Figure 5-6 of the distribution of variability for
second-by-second data of the modeling dataset and of the datain the RSD dataset. Mode 1 is
based upon negative values of VSP. For both the CO/CO, and NO,/CO; ratios, the RSD data
generally produces higher values than does the modeling data set. Although not shown as data
values in the graphs because alog scale was used for the x-axis, the modeling data set contained
data values of less than zero, which are considered to reflect measurement error and not to be
significantly different than atrue value of zero or just slightly greater than zero. For the HC/CO,
ratio, the RSD data produced a distribution with less variability than the modeling data set. Most
of the data in the modeling data set are based upon FID measurements, in comparison to the
NDIR method used in remote sensing. Therefore, the difference in the shape of the distributions
from the two datasets may reflect differences attributable to the measurement methods.

— oD dan
Remak =Ereing
— Mcdeing dak
Remok
SEnsing

— ModeIng dak
Remoke
=Ensira

Figure 5-6. Comparison of Variability for CO/CO,, HC/CO,, and NO,/CO, Ratios for Modeling
Data and Remote Sensing Datafor VSP Mode 1 with Engine Size Less Than 3.5 Liters
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Figure 5-7. Comparison of Variability for CO/CO,, HC/CO,, and NO,/CO, Ratios for Modeling
Data and Remote Sensing Datafor VSP Mode 7 with Engine Size Less Than 3.5 Liters

Figures 5-7 and 5-8 show comparisons of the variability in emission ratios for Modes 7 and 12,
respectively. For the CO/CO, and NO,/CO;, ratios, the general trends are similar to that for
Mode 1 in that the average value of the RSD datais generally larger than that of the modeling
data set. Furthermore, the entire distribution of ratios for the RSD dataistoward larger values
for most of the percentiles of the distribution, when compared to the modeling data set.

However, the modeling data set typically captures awider range of variability than the RSD data,
asindicated by comparing the range from the lowest to the highest values of the distributions.
For example, the modeling data typically span three to five orders of magnitude, whereas the
RSD datatypically span approximately two to three orders of magnitude in most cases. The
upper tails of the emission ratio distributions are comparable for Modes 1 and 7 for both the
COICO, and NO,/CO, ratios. For Mode 12, the upper tail of the RSD data distributions typically
have larger values than for the modeling data set.

For the HC/CO; ratio, the results for Mode 7 are qualitatively similar to that for Mode 1. For
Mode 12, the modeling data set produced a higher average value of the HC/CO, ratio compared
to the RSD data set. Typically, the RSD data produced a narrower range of values and smaller
values at the upper tail of the distribution when compared to the modeling data in the case of the
HC/CO; ratio.

When comparing the three modes illustrated in Figures 5-6 through 5-8, it should be bornein
mind that the relative difference between the RSD data and the modeling data set decrease as the
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Figure 5-8. Comparison of Variability for CO/CO,, HC/CO,, and NO,/CO, Ratios for Modeling
Data and Remote Sensing Data for VSP Mode 12 with Engine Size Less Than 3.5 Liters

VSPincreases. For example, the distributions for the NO,/CO; ratios for Mode 1 are more
separated from each other than is the case for Mode 12.

5.6  Comparison of Vehicle Activity in the RSD and Modeling Databases

For the CO/CO, and NO,/CO, ratios when compared for VSP modes, it istypically the case that
the RSD data produces larger average emission estimates and generally has higher emission
ratios than does the modeling data set. In order to gain insight into possible reasons for these
differences, the vehicle activity in the RSD data base was compared with that of the modeling
database. The comparison was done on the basis of the distribution of speed and acceleration
within specific modes. The comparison was done for selected modes for vehicles with engine
displacement less than 3.5 liters. Because odometer reading is unobservable for RSD
measurements, it was not possible to stratify the comparison with respect to odometer reading.
Three modes were selected for the comparison: (1) Mode 1 to represent low V SP values; (2)
Mode 7 to represent moderate V SP values; and (3) Mode 12 to represent large VSP values. The
cumulative distributions of both speed and acceleration, and the joint distributions of speed and
acceleration, are shown for both the modeling data and the RSD datain Figures 5-9, 5-10, and 5-
11 for VSP Modes 1, 7, and 12, respectively, for vehicles with engine displacement less than 3.5
liters.

For Mode 1, it is clear that the RSD data have less variability in speed than the modeling data.
Furthermore, the RSD data have alarger proportion of larger acceleration rates than the
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modeling data. Mode 1 is based upon V SP values of less than -2 kW/ton. Although the range of
VSPvaluesin any individual bin is constrained by the definition of the mode, there are many
different combinations of speed and acceleration that can produce a narrow range of values of
VSP. For example, large magnitudes of deceleration at low speed can produce the same VSP
estimate as a small magnitude of deceleration at higher speed. When comparing the scatter plots
of acceleration versus speed for the modeling data set and the RSD data set, it is clear that the
modeling data set addresses a much wider range of combinations of acceleration and speed than
doesthe RSD data. Most of the RSD data are for decelerations of greater than -3 mph/sec and
for speeds between 20 mph and 40 mph, versus decelerations of typically -5 mph/sec or greater
and speeds ranging from approximately zero to greater than 70 mph. For this mode and strata,
the RSD data produced higher average emission ratios for al three pollutants. It isclear that the
range of activity for Mode 1 is very different for the RSD data compared to the remote sensing
data.

For Mode 7, the remote sensing data have a much narrower range of speeds, from approximately
20 mph to 40 mph, compared to the modeling data, for which speed varies from approximately
10 mph to over 80 mph. However, the RSD data typically have much larger values of
acceleration, with arange from approximately 1 mph/sec to as much as approximately 4
mph/sec. The modeling data set has alarge proportion of acceleration data of lessthan 1
mph/sec, although the upper tail of the cumulative distribution of acceleration includes a small
percentage of values greater than 4 mph/sec. When comparing the scatter plots of acceleration
versus speed, it is clear that the modeling data set has awider range of activity. Thelarger
average acceleration for the RSD data set is a hotabl e difference compared to the modeling data
set, and may be a key reason as to why the emission ratios for the RSD data tend to be larger
than for the modeling data set.

For Mode 12, the modeling data set has a remarkably wider range of variability in speed than the
RSD data, but also has a noticeably lower average value of acceleration. The RSD data have
speeds ranging typically from approximately 25 mph to 50 mph, versus a range of approximately
20 mph to 80 mph for the modeling data set. The RSD data have accelerations ranging from 2
mph/sec to 4 mph/sec, compared to arange of approximately 0 mph/sec to 4 mph/sec for the
modeling data. A comparison of the scatter plotsin Figure 5-11 suggests that the modeling data
capture awider range of variability in activity, but have a much smaller proportion of activity
associated with larger accel erations when compared to the RSD data. Thus, it islikely that these
differencesin activity account for at least some of the differencesin emissions.

It should be pointed out that although the statistical analysis presented in Chapter 3 identified

V SP, engine displacement, and odometer reading as the three most important explanatory
variables, there may be opportunities to further disaggregate the data in the future when working
with larger data sets than the one used in this study. For example, as shown in Chapter 9, there
are some differencesin average emissions for aV SP mode when taking into account differences
in speed and/or acceleration that might help explain additional variability not captured by the
model developed in Chapter 3.
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5.7  Comparison of Emissions Ratios and Vehicle Activity Between the RSD and |M 240
Databases

Because the RSD data are based upon observations of alarge number of on-road vehicles, and
because the IM 240 are based upon a sample of on-road vehicles that is believed to better
represent high emitters than other data sets used in this study, it was hypothesized that there may
be similarities between the IM 240 dynamometer data and the RSD data. To explore this
hypothesis, the average modal emission ratios estimated from the two data sets were compared.
The comparison was stratified based upon engine displacement since information was available
in both data sets regarding this explanatory variable. The average emission ratios based upon
both data sets are shown in Figure 5-12 for vehicles with engine displacement of lessthan 3.5
liters and in Figure 5-13 for vehicles with engine displacement of greater than 3.5 liters.

Figure 5-12 illustrates a general similarity between the emission ratios estimated from the two
different datasets. Particularly in the case of the HC/COs ratios, for 9 of the 14 modesthereis
not a significant difference in the average ratios when comparing the two datasets. Both datasets
imply high emission ratios for the low V SP modes, dightly lower emission ratios for the
moderate V SP modes, and relatively high values for Mode 13. In the case of the CO/CO; ratios,
although only 5 of the 14 modes are statistically similar to each other, the qualitative trends for
both data sets are similar. In particular, the emission ratios for Modes 1 through 10 are relatively
constant for a given data set, but the average ratios increase substantially for Modes 11 through
13. Mode 14 tends to have somewhat lower values than does Mode 13. For the NO,/CO; rétios,
the RSD data tends to have higher average values for the lowest VSP modes, and the IM240 data
tends to have higher average values for Modes 5 to 14.

The comparisonsin Figure 5-13 are less clear than those of Figure 5-12 mainly because there are
fewer data, particularly for the 1M 240 database, that fall into this particular strata, and especially
for the high VSP modes (e.g., Modes 12, 13, and 14). The results suggest that there are
similarities in the two datasets for CO and NOy, except for the highest VSP modes, and that for
HC the RSD datatypically have higher ratios than the IM240 data except for Mode 1.

Overal, based upon the results shown in Figures 5-12 and 5-13, there are important qualitative
similarities in the average emission ratios for both data sets. However, akey question is whether
the similarities in emissions are because of similaritiesin vehicle activity. In order to answer this
guestion, the distributions of each of speed and accel eration were compared, as were the joint
distributions of both speed and acceleration. These comparisons are shown in Figures 5-14, 5-
15, and 5-16 for Modes 1, 7, and 12 for vehicles with engine displacement of lessthan 3.5 liters.

For the Mode 1 comparison shown in Figure 5-14, the IM240 data have a wider range of speed,
but it is apparent that the distribution of speeds for the IM240 data are bimodal. Thus, thereisa
large proportion of speedsin the range of approximately 10 to 30 mph, as well asa smaller
proportion of speedsin the range of approximately 50 to 60 mph. In contrast, as noted in the
previous section, the distribution of speedsfor the RSD datais primarily between 20 mph and 40
mph. The RSD datatend to have alarger proportion of larger acceleration rates than does the
IM240 data. A comparison of the scatter plots for acceleration versus speed indicates that the
IM 240 data captures a much wider range of variability in terms of different combinations of
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speed and accel eration than does the RSD data. The RSD data had a higher average emission
ratio for NOy but lower ratios for CO and HC for Mode 1 for vehicles with engine displacements
less than 3.5 liters.

For the Mode 7 comparison, the IM 240 data are strongly bimodal with respect to both speed and
acceleration. The IM240 data have a wider range of values for speed and accel eration than do
the RSD data. In particular, there is more representation of higher speeds and asimilar
representation of the upper tail of the distribution of acceleration when comparing the IM240
datato the RSD data.

For Mode 12, the IM240 data typically represent somewhat higher speeds but also somewhat
smaller accelerations than does the RSD data. However, for Mode 12, there are relatively few
data points for the IM240 data set in comparison to the RSD data.

Overal, although not conclusive, the comparison of vehicle activity in terms of speed and
accel eration between the IM240 and RSD data suggests that there are substantial differencesin
activity patterns between the two data sets. Thus, although in some cases both data sets have
similar emission ratios, it is possible that such apparent similarities are actually based upon
differencesin the vehicle and in the vehicle activity.

5.8 Summary and Recommendations

The key findings from the comparison of emission factor units and from the evaluation of RSD
data are briefly summarized here, followed by more detailed discussion:

*  When comparing RSD to the modeling data:
— Thereislessvariability in emission ratios of CO/CO, and HC/CO, for the low
VSP bins
— Thereissubstantial variability in emissions for the high VSP bins
» for NOy, thereisaneed for asimilar number of modes for the emission ratios and for
mass per time unitsin order to explain variability in emissions.
*  Need CO, (or fuel use) on amass per time basis anyway, which motivates the need for a
modal approach such as that developed in Chapter 3 on a mass per time basis
* Because of the variability in NOy emissions even when emission ratios are used, and
because of the need to use a mass per time approach to estimate CO, emissions, the use
of emission ratios instead of mass per time emission factors for only a subset of
pollutants does not offer any significant advantage, especially from a software/model
design perspective.
* RSD dataare not a strong candidate for use in model devel opment because some key
variables are not observable, such as odometer reading.
* TheHC/CO, emissions data from RSD do not appear to be comparable to that from the
modeling dataset because of the measurement techniques employed.

The results of the application of the binning methods to the modeling data set suggest that there
islessvariability in emission ratios of CO/CO, and HC/CO, for the low VSP bins. However,
there is substantial variability in the NO,/CO; ratio for the low VSP bins, and for all three
pollutants there is substantial variability in emissions among the high VSP bins. Therefore, the
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use of emission ratios instead of mass per time emission factors does not offer any advantagein
terms of reducing the number of modes needed to model emissions, if the same number of modes
are to be applied to all pollutants for ssimplicity of software design and data management.

The potential role of RSD data was evaluated based upon several comparisons. (1) comparison
of emission ratios for the RSD data versus the modeling data; (2) comparison of vehicle activity
for the RSD data versus the modeling data; (3) comparison of emission ratios for the RSD data
versus IM240 data; and (4) comparison of vehicle activity for the RSD data versus the IM240
data. The RSD datatypically lead to higher emission ratios than the modeling data, especialy
for lower VSP modes (e.g., Modes 1 through 10), especialy for the NO,/CO, and HC/CO,
ratios. Although it may be tempting to conclude that such differences are because the RSD data
might have a better representation of higher emitting vehicles, or of higher emissions episodes
with normal emitting vehicles, it isimportant to compare the vehicle activity of both data sets. A
comparison of the speed and acceleration distributions for both data sets revealed that the RSD
datatypicaly had lower average speeds and higher average accel erations than the modeling data
set. Asshown in Chapter 9, it can be the case within aVVSP mode that some of the variability in
emissions can be explained in terms of speed and/or acceleration. Therefore, athough not
conclusive at thistime, it is possible that the differences in emissions between the RSD data and
the modeling data may be attributable, at least in part, to differencesin activity patterns.

A comparison of the IM240 and RSD data suggests that these two data sets have quantitatively
similar emission ratios in some cases and qualitatively similar emission ratio trends among the
modes in a number of cases. However, a comparison of the speed and acceleration distributions
of the two datasets indicates that there is a substantially different activity pattern for the two data
sets, with the 1IM 240 data based upon bimodal speed distributions with awider rangein
variability in speed, higher average speed, and lower average acceleration, than the RSD data.
Thus, it is possible that the apparent similarities between these two data sets in terms of average
emission ratios may be because of compensating differencesin fleet mix and activity patterns, or
it ispossible that the emission ratios are robust to the differencesin activity patterns.

The key findings regarding the potential role of RSD data are discussed here. RSD data were not
considered to be a strong candidate for use in model development because some key variables,
particularly odometer reading, are not observable. Odometer reading has been shown in earlier
chapters to be an important predictive variable. The HC/CO, emissions datafrom RSD do not
appear to be comparable to that from the modeling dataset, which may be because of significant
differences in the measurement technique employed. It isalso possible that there are differences
in fuel composition that may cause some of the observed differences. Finally, the differencesin
emission ratios for the RSD data versus the modeling data may be attributable in part to
differences in activity patterns not yet captured by the conceptual modeling approach. This latter
issue deserves some exploration as part of future work.

It has been hypothesized that RSD data may be useful in helping to better characterize the
distribution of different emitting vehicles, and particularly high emitting vehicles. It should be
noted that because RSD measurements are a snapshot of typically less than one second, and
because a normal emitting vehicle can have episodes of high emissions depending on the activity
pattern, it is not conclusive that a single high emissions ratio measurement of a vehicle enables
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identification of such avehicle asahigh emitter. Thus, it is possible that a high emission ratio
may be associated with a high emitting vehicle or it could be associated with a high emissions
episode for anormal emitting vehicle. A comparison of the distribution of emission ratios for
the modeling data set versus that of the RSD data set suggests that the modeling data set captures
awider relative range of variability than does the RSD data set, while at the same time the RSD
data often had higher average values than did the modeling data set. The upper tails of the
distributions of variability for a given mode for the modeling data set often overlapped
substantially with the upper tails of the distributions for the RSD data, suggesting that the highest
emission ratios in either data set were comparable. Thus, it could be the case that the modeling
dataset does not have the same proportional representation of high emitting vehicles, or of high
emissions episodes for normal emitting vehicles, as doesthe RSD data. These differences were
typically more pronounced for the low and moderate VSP modes. For the higher V SP modes,
the shapes of the distributions from the modeling data set and the RSD data set were very similar
for both the CO/CO, and NO,/CO; ratios.

The siting of the RSD instrument plays an important role in the range of activity that is observed.
It is clear from these data that the RSD sites had a much smaller range of variability in activity
patterns than did the dynamometer data or the onboard data that comprised the modeling data
base and the IM240 database. Since RSD’s are often sited at |ocations that are expected to have
positive accelerations or situations in which vehicles are under load, it is possible that thereisa
biasin the activity pattern of the RSD data that is perhaps in part responsible for the apparent
differences in emissions when compared to the modeling data set. In this particular case,
although the range of speeds was typically lessfor the RSD data than for the other data sets, the
accelerations tended to be larger on average. Given these differences, it did not seem fruitful to
try to proceed with methods for making adjustments to the modeling data set in order to better
match the emission ratios estimated from the RSD data.

It is possible that RSD data could be used indirectly as arecruiting tool to try to obtain a
representative sample of vehicles for dynamometer and on-board testing, in order to improve the
representation of differently emitting vehicles.

In brief summary, for the purposes of this study, there was no substantial advantage found for
using emission ratios instead of mass per time emission factors. In either case, it is necessary to
estimate CO, emission in mass per time units. Therefore, for consistency, mass per time units
are recommended for further analysis. Although there were differences in the emission ratios for
the RSD data versus the modeling data, there were also substantial differencesin activity
patterns for the two data sets. Therefore, the RSD data were not used as part of model
development, but the comparisons suggest that there may be opportunities to refine the
conceptual modeling approach in the future by considering additional binning criteria based upon
speed and/or acceleration for the VSP modes.
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6 COMPARISON AND EVALUATION OF DATA WEIGHTING APPROACHES

The objective of this chapter isto compare and evaluate three approaches for weighting data: (1)
time-weighted; (2) vehicle weighted; or (3) trip-weighted. Based upon comparison and
evaluation of these three approaches, a preferred approach is recommended.

6.1 Methodological Considerations

In the time-weighted approach, datain each bin are averaged with respect to time. For second-
by-second data, each second of datawill have equal weight. For five second average data, each
five second time period of datawill have equal weight. For ten second average data, each ten
second time period of datawill have equal weight. The advantage of this approach isthat data
can be combined from any number of vehicles within a vehicle category and the sample sizes
within each bin can become quite large. Furthermore, the time-weighted approach can be used
to support estimation of emissions for any arbitrary averaging time larger than that of the original
data. For example, 10 second average emission estimates can be devel oped by averaging over
10 seconds of one second data. Therefore, it is possible to consider, for example, how cruise
emissions that take place during a one minute period of freeway cruising might vary from one
time period to another. The inter-vehicle variability and fleet average uncertainty in emission
will be afunction of the desired time periods. Another advantage of the time-wei ghted approach
isthat more weight is given to vehicles that have undergone longer periods of testing. For
example, if RSD data were to be included in the development of amodel based upon one second
averaging, each vehicle measured by the RSD would typically be represented by only one second
worth of data. In contrast, a vehicle that has undergone substantial on-road emissions
measurement might be represented by tens of thousands of seconds of data. Intuitively, it seems
appropriate to give more weight to vehicles that have undergone more testing time.

In the vehicle-weighted approach, datain each bin are averaged with respect to each vehicle.
Thus, for each vehicle, asingle representative estimate of emissions would be developed. For
example, the ssmplest vehicle-wei ghted approach would be to calculate an average emission rate
for each vehicle based upon data for that vehicle within a given bin. The average emission rate
for al datain the bin would then be calculated by averaging the emission rates estimated for
each vehicle represented in the bin. This approach will tend to give less weight to vehicles for
which there are many seconds (or other averaging time periods) of data, and will give
disproportionate weight to vehicles for which there are relatively few time periods of data. For
example, if there are 10 seconds of data for vehicle 1, 30 seconds of data for vehicle 2, and 50
seconds of datafor vehicle 3, the average emission rate for each vehicle would first be calcul ated
Then, the three vehicle average values would be given equal weight to determine the average
over all three vehicles. Thus, the average emission rate for Vehicle 1 would have equal weight
to that of Vehicle 2 or Vehicle 3 even though there are three and five times, respectively, as
much datafor these latter two vehicles. Of course, a minimum data requirement criterion could
be specified such that a vehicle average would be calculated only for vehicles for which there are
aminimum number of seconds of data. However, there would still be variability in the amount
of testing time for different vehiclesin the database, and there would remain a potential problem
that vehicles with less testing time than others would in effect have an influence comparable to
those with more testing time.
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The vehicle weight approach offers some potential disadvantages. Oneis that the weight given
to different vehicles may be intuitively unappealing. For example, in the extreme case, one
second of RSD datafor a vehicle could be equally weighted with many hours of on-board data
for another vehicle. Secondly, the use of a vehicle-weighted approach may complicate the
guantification of variability and uncertainty. The range of inter-vehicle variability and of fleet
average uncertainty is afunction of averaging time, with the latter point illustrated quantitatively
in Chapter 7. For example, one second emissions of a vehicle varies much more from one
second to another than 10 second average emissions vary from one 10 second period to another.
With the time-weighted approach, it is possible to combine data to represent any averaging time
of interest, conditioned on assumptions regarding the structure of the database (e.g., statistical
independence). With the vehicle weighted approach, the averaging time of the analysisis
unknown and isitself variable, because the average modal emission rate for one vehicle will
typically be based upon a different time period than that for another vehicle. For example, if
there are five seconds of datain agiven bin for one vehicle, and 10 minutes of datain the same
bin for another vehicle, the averages of each of the two vehicles are based upon disparate
averaging times.

The trip-weighted approach was included as an alternative to be evaluated in this study. The
term “trip” essentially refersto an averaging time selected as the basis for aggregate emissions
measurements. For example, datafor each vehicle could be divided into segments representing
trips. Each set of data from the same vehicle and “trip” within a bin would be averaged to arrive
at a“trip-average” emission estimate for that vehicle. A vehicle for which thereisalarge
amount of on-board data might be represented by more than one such “trip”. Therefore, this
approach will tend to give more weight to vehicles for which there are more data, similar to the
time-weighted approach. Unlike the vehicle-weighted approach, there is some attempt in the
trip-weighted approach to have more comparability with respect to the averaging time of the
data. However, there will still be variation in the number of averaging time periods that are the
basis for any trip average emission estimate in any given bin, since the speed profile of any given
trip will differ from any other given trip. Therefore, this approach has the same qualitative
limitations as the vehicle-weighted approach.

In the vehicle weighted and trip-weighted approach, there is no direct way to control for
averaging time. Therefore, the binned data will represent a mixture of unknown averaging times,
and any uncertainty estimate devel oped from these data will be of unknown pedigree with
respect to averaging time. Thus, we compared the three approaches with respect to the
characterization of uncertainty in average emission rates.

In choosing a preferred weighting method, consideration was given to the following criteria: (1)
technical rigor to support a defensible estimate of variability and uncertainty; (2) flexibility to
estimate variability and uncertainty for different averaging times; (3) practical aspects of the
performance of each method (e.g., tractability, ease of developing estimates); (4) compatibility of
the method with data availability and overall modeling objectives.

6.2 Comparison of Weighting Approaches

A component of thiswork that is also closely related to the issue of analysis of variability and
uncertainty is comparison of different approaches for weighting data. Specifically, time, trip,

92



and vehicle-wel ghted approaches were compared. The analysis results reported in this section
are based upon 14 V SP bins without further binning. The quantitative results for comparison of
the three approaches with respect to the 56-bin approach are given in the Appendix.

The empirical distributions of variability and fitted parametric distributions are displayed for the
examples of VSP Modes 1, 7, and 14 for each of the four pollutants considered and for the time-
weighted approach in Figures 6-1, 6-2, and 6-3, respectively. For example, for VSP Mode 1, the
Weibull distribution fitted to the NO data appears to adequately describe the general
characteristics of the data, including the central tendency, the upper tail, and the positive
skewness. However, there are some deviancesin the fit that are noticeable, such between the 50™
and 90" percentiles. Similarly, the lognormal distribution fit to the CO, data offers a
qualitatively good fit, but deviates from the datain some respects, such as near the 20" percentile
and near the 65" percentile. The deviations of the fitted distribution from the datain these two
cases are not large in an absolute sense, and are likely to be acceptable. In contrast, the fitted
distributions for HC and CO for Mode 1 do not appear to offer good fits. For Mode 7, all the
distributions fitted appear to capture the key trends in the data for al four pollutants. For Mode
14, the fits are generally very good for NOy, HC, and CO,, but in the case of CO thefitted
distribution does not agree with the data, especially above the 70™ percentile. Overall, in most
cases, the fitted distributions appear to perform well. In the case of CO for Mode 14, the mean
and standard deviation of the fitted distribution are substantially different than that of the data.

In addition to the time-weighted approach, the results shown graphically in Figures 6-4 through
6-6 are for the trip-weighted approach for Modes 1, 7, and 14, respectively. Similar results are
displayed for the vehicle-weighted approach in Figures 6-7, 6-8, and 6-9 for Modes 1, 7, and 14,
respectively. For the trip-weighted approach, the parametric distributions provide a good fit to
the datafor Modes 1 and 7. For Mode 14, the fitsfor HC and CO, are good. The fitsfor NOy
and particularly CO are less than ideal, although key qualitative trends are captured by the fits.
Generally, the comparison of the parametric distributions with the datais similar for the vehicle-
weighted approach: thefits are typically good for Modes 1 and 7; the fits for HC and CO; for
Mode 14 are good; and the fits for NOy and CO for Mode 14 are not as good. Asdiscussed in
Chaper 7, an alternative to fitting distributions using Maximum Likelihood Estimation (MLE) is
to use the Method of Matching Moments (MoMM). In the latter method, the fitted distribution
such as alognormal will have a mean and standard deviation the same as that of thedata. This
point is further illustrated in Chapter 7.

The selected types of distributions and the parameters of the fitted distributions are summarized
for all modes and pollutantsin Table 6-1 for the trip-weighted approach. A similar summary is
given for the vehicle weighted approach in Table 6-2. Similar information regarding the time
weighted approach is given in the chapter on uncertainty analysis.

A direct graphical comparison of the variability associated with the time, trip, and vehicle
weighted approachesis given in Figures 6-10 and 6-11 for NO and HC, respectively, for Modes
1,7, and 14. Itistypically the case that the time-based approach has alonger upper tail to the
right than the other approaches, which involve averaging of the data. Mode 7 for NOy offers the
clearest example of the effects of averaging the data; in this case, the upper tail of the distribution
is substantially smaller than for the time-based approach.
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Figure 6-1. Variability in NOy, HC, CO,, and CO Emissions (g/sec) for VSP Mode #1
Characterized by Empirical and Fitted Parametric Probability Distribution Models for Second-

by-Second Data.
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Figure 6-2. Variability in NOy, HC, CO,, and CO Emissions (g/sec) for VSP Mode #7
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Distribution for Second-by-Second Data.
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Figure 6-6. Variability in NOy, HC, CO,, and CO Emissions (g/sec) for VSP Mode #14
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Distribution for Trip Average Means.
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Figure 6-8. Variability in NOy, HC, CO,, and CO Emissions (g/sec) for VSP Mode #7
Characterized by Empirical Probability Distribution and Fitted Parametric Probability
Distribution for Vehicle Average Means.
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Figure 6-9. Variability in NOy, HC, CO,, and CO Emissions (g/sec) for VSP Mode #14
Characterized by Empirical Probability Distribution and Fitted Parametric Probability
Distribution for Vehicle Average Means.
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Table 6-1. Summary of Fitted Parametric Probability Distributions for Variability in NO , HC, CO,, and CO Emissions (g/sec) for
V'SP Binsfor Trip Average Means

NO HC CO, 0]
V&P Bins Fit Para. Fit Para. Fit Para Fit Para. Fit Para
Dit® paral para 2 Dit® Digt® paral para 2 Dit® Digt® paral
1 L 1.1746 -7.1968 L 1.4327 -8.4431 L 0.5305 0.5235 L 1.6843 -5.5881
2 L 1.2133 -7.222 L 1.5103 -8.6318 L 0.5001 0.5467 L 1.6961 -5.8367
3 L 1.1893 -7.5064 L 1.5108 -8.7568 L 0.4868 0.3599 L 1.5637 -6.1689
4 W 0.0021 1.0996 L 1.4482 -8.2217 L 0.3563 0.906 L 1.6522 -5.3273
5 W 0.0025 1.0771 L 1.3764 -8.0443 L 0.3256 1.0988 L 1.5545 -5.1264
6 W 0.0031 1.039 L 1.3421 -7.9055 w 3.9612 3.798 L 1.5702 -5.0068
7 W 0.0036 1.0137 L 1.3774 -7.8134 w 4.5374 3.5135 L 1.595 -4.8661
8 W 0.0046 0.9858 L 1.4163 -7.7013 w 5.1194 3.2378 L 1.6647 -4.7747
9 W 0.0055 0.9031 L 1.4125 -7.5305 w 5.773 2.9653 L 1.8428 -4.6522
10 W 0.0061 0.8227 L 1.5656 -7.4463 w 6.3325 2.5081 w 0.0283 0.5263
11 W 0.0072 0.6991 W 0.0018 0.6731 w 7.5883 2.3674 w 0.0518 0.5148
12 W 0.012 0.8189 W 0.0036 0.733 w 9.0917 2.5755 w 0.1501 0.5218
13 W 0.0129 0.8494 W 0.005 0.742 w 10.2248 2.679 w 0.2868 0.5092
14 W 0.0151 0.6942 W 0.0059 0.7189 w 10.925 2.1308 w 0.4011 0.4567

W = Weibull; para 1 of Weibull is scale parameter and para 2 of Weibull is shape parameter;

L =lognormal; para 1 of lognormal is ¢ and para 2 of lognormal is &;

Parameters were calculated using SAS.
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Table 6-2. Summary of Fitted Parametric Probability Distributions for Variability in NO , HC, CO,, and CO Emissions (g/sec) for
VSP Binsfor Vehicle Average Means

NO HC CO, Cco
VSP Bins Fit Para. Fit Para. Fit Para. Fit Para. Fit Para.
Dist® para 1l para 2 Dist® Dist® paral para 2 Digt® Dist® para 1l

1 L 1.162 -7.4631 L 1.223 -8.3866 L 0.4726 0.2934 W 0.0127 0.9102
2 W 0.001 0.8876 L 1.3677 -8.7468 L 0.4384 0.3477 L 1.4844 -5.6518
3 L 1.1366 -7.6305 L 1.313 -8.8287 L 0.3567 0.2279 L 1.3664 -6.0737
4 W 0.0016 1.1128 L 1.2155 -8.3183 W 2.5339 4.3527 L 1.22 -5.1105
5 W 0.0023 1.116 L 1.0873 -7.9406 W 3.2985 5.0571 L 1.1426 -4.7103
6 W 0.0031 1.117 L 1.0185 -7.6843 W 4.0899 4.7385 L 1.1543 -4.3078
7 W 0.0038 1.0844 L 1.0469 -7.4981 W 4.8834 4.2448 L 1.256 -4.0167
8 W 0.0048 1.0523 L 1.1083 -7.2772 W 5.6715 3.9835 L 1.4549 -3.7997
9 W 0.0059 1.0186 L 1.0985 -7.0789 W 6.4881 3.7832 L 1.5313 -3.5608
10 W 0.007 0.9649 L 1.0641 -6.8674 W 7.2909 3.4183 W 0.0886 0.7557
11 W 0.0098 0.9198 L 1.1483 -6.5547 W 8.7287 3.0995 W 0.1588 0.6969
12 W 0.0131 0.919 L 1.199 -6.1941 W 10.1588 2.8832 W 0.3065 0.68

13 W 0.0143 0.8884 L 1.2823 -5.8853 L 0.3453 2.2655 W 0.5212 0.6373
14 W 0.0185 0.7472 W 0.0065 0.7644 W 12.7194 2.7592 W 0.7882 0.5785

W = Weibull; para 1 of Weibull is scale parameter and para 2 of Weibull is shape parameter;

L =lognormal; para 1 of lognormal is ¢ and para 2 of lognormal is &;

Parameters were calculated using SAS.
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Figure 6-10. Comparison of Variability in NO, Emissions for Time-Average, Trip-Average, and
Vehicle-Average Approaches, Characterized by Parametric Probability Distributions, for VSP
Modes #1, #7 and #14.
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Figure 6-11. Comparison of Variability in HC Emissions for Time-Average, Trip-Average, and
Vehicle-Average Approaches, Characterized by Parametric Probability Distributions, for VSP

Modes #1, #7 and #14.
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Because different types of averaging lead to different weighting of information in the database,
the mean and standard deviation will differ depending upon which weighting approach is used.
Table 6-3 summarizes how much the estimate of mean emissions changes within amode for a
given pollutant depending upon whether atrip-average or vehicle-average approach isused. The
percentage changes shown in the table are with respect to the time-weighted mean values. The
average value for the trip weighted approach can be either larger or smaller than that of the time-
weighted approach for a given pollutant when comparing different modes. For example, the trip-
weighted average for NO, emissions for Mode 1 is 25 percent greater than for the time weighted
approach, but for Mode 8 the trip-weighted average is 20 percent less than that of the time-
weighted approach. Both the trip- and vehicle-weighted approaches have substantially different
mean estimates in specific cases compared to the time weighted approach. These differences
range from essentially no difference to an increase of over 100 percent or a decrease of as much
as—42 percent. For NOy, CO, and HC, the differences in means exceed 10 percent in magnitude
for 80 percent of the pollutant/mode combinations. In contrast, for CO,, adifference in mean
values of more than 10 percent in magnitude occurred for only approximately 30 percent of the
modes. Thus, while mean CO, emission estimates are more robust to the selection of averaging
methods, the average emissions of NO, CO, and HC are dependent upon what method is
selected.

A similar comparison is shown in Table 6-4 for the difference in standard deviations estimated
based upon the three alternative weighting schemes. The magnitude of the relative differencesis
larger for the standard deviation than it is for the mean. However, unlike the differencesin mean
values, which may be higher or lower than the time-wei ghted approach, the standard deviations
based upon either the trip- or vehicle-weighted approaches are generally substantially smaller
than those based upon the time-weighted approach. This result is expected, since averaging will
lead to areduction in variability in the data. The reduction in the standard deviation is on the
order of 30 to 60 percent. For most pollutant/mode combinations, the vehicle-weighted approach
leads to more reduction in the standard deviation than does the trip weighted approach. Thisis
because the database includes multiple trips for some vehicles.

The relative range of uncertainty in the mean modal emissionsis given in Table 6-5 for time-
averages, in Table 6-6 for trip-averages and in Table 6-7 for vehicle-averages. The relative
ranges of uncertainty in the mean modal emissions for trip-averages and vehicle-averages can be
compared with the time-weighted results. Because the sample size becomes smaller as second-
by-second data are averaged, even though the variability in emissions decreases to some extent
(asindicated by the resultsin Table 6-4), the uncertainty in the average increases when compared
to the time based approach. For example, consider the range of uncertainty in average NOy
emissions for Mode 1. For the time-weighted approach, it is plus or minus 3 percent. For the
trip-weighted approach, it is plus or minus 15 percent. For the vehicle weighted approach, it is
plus or minus 26 percent.

The average emission rates and the 95 percent confidence intervals for the averages are
compared graphically in Figure 6-12 for each of the four pollutants and for each mode.
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Table 6-3. Comparison of Mean Emissions of NO,, HC, CO,, and CO Emissions (g/sec) for VSP Bins:

Time-Average, Trip-Average,

and Vehicle-Average Approaches.
NO* HC? Co2 co?

Bin Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Avg Avg Avg Avg

mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.
1 0.0011 0.0014 | 25 0.0011 | -3 0.0007 0.0006 | -9 0.0005 | -28 | 1.6337 1.9294 | 18 14894 | -9 0.0110 0.0151 | 37 0.0134 | 22
2 0.0009 0.0014 | 53 0.0010 | 12 0.0004 0.0006 | 35 0.0004 | -6 1.5254 1.9498 | 28 15461 | 1 0.0065 0.0141 | 118 | 0.0100 | 54
3 0.0006 0.0011 | 91 0.0009 | 53 0.0007 0.0005 | -17 | 0.0004 | -42 | 1.2050 16322 | 35 13391 | 11 0.0051 0.0088 | 72 0.0062 | 22
4 0.0016 0.0020 | 21 0.0015 | -7 0.0006 0.0008 | 21 0.0006 | -14 | 2.3308 2.6267 | 13 23142 | -1 0.0114 0.0186 | 64 0.0130 | 14
5 0.0025 0.0025 | -1 0.0022 | -13 | 0.0008 0.0008 | 3 0.0007 | -16 | 3.0882 31464 | 2 3.0461 | -1 0.0156 0.0217 | 39 0.0177 | 13
6 0.0034 0.0031 | -10 | 0.0029 | -14 | 0.0011 0.0009 | -14 | 0.0008 | -22 | 3.7963 35920 | -5 37772 | -1 0.0224 0.0219 | -2 0.0263 | 17
7 0.0044 0.0036 | -19 | 0.0036 | -18 | 0.0013 0.0010 | -21 | 0.0010 | -24 | 4.4899 4.0968 | -9 44868 | 0 0.0287 0.0258 | -10 | 0.0374 | 30
8 0.0058 0.0046 | -20 | 0.0047 | -18 | 0.0016 0.0012 | -27 | 0.0013 | -20 | 5.0543 46024 | -9 51861 | 3 0.0413 0.0333 | -20 | 0.0573 | 39
9 0.0070 0.0058 | -17 | 0.0059 | -16 | 0.0019 0.0014 | -28 | 0.0015 | -20 | 5.6496 51663 | -9 59128 | 5 0.0526 0.0418 | -21 | 0.0766 | 46
10 | 0.0085 0.0068 | -19 | 0.0071 | -16 | 0.0023 0.0017 | -26 | 0.0018 | -20 | 6.1914 56271 | -9 6.5947 | 7 0.0728 0.0553 | -24 | 0.1074 | 48
11 | 0.0112 0.0092 | -18 | 0.0102 | -9 0.0031 0.0025 | -19 | 0.0026 | -17 | 7.1117 6.7425 | -5 7.8458 | 10 0.1304 0.1047 | -20 | 0.2036 | 56
12 | 0.0144 0.0134 | -7 0.0137 | -5 0.0045 0.0046 | 1 0.0039 | -13 | 8.0558 8.0667 | 0 9.0446 | 12 0.2712 02701 | O 0.3922 | 45
13 | 0.0171 0.0140 | -18 | 0.0152 | -11 | 0.0060 0.0064 | 6 0.0056 | -5 9.2945 9.0835 | -2 10.2076 | 10 0.4878 0.5091 | 4 0.6891 | 41
14 | 0.0198 0.0193 | -3 0.0225 | 13 0.0098 0.0074 | -25 | 0.0077 | -21 | 9.9292 9.6832 | -2 113174 | 14 0.8101 0.8049 | -1 1.1002 | 36

 Unit of mean: g/sec; Unit of diff.: %.
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Table 6-4. Comparison of Standard Deviations of Variability in NO,_, HC, CO,, and CO Emissions (g/sec) for VSP Bins: Time-
Average, Trip-Average, and Vehicle-Average Approaches.

NO? HC? CO* co?
Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg
Bin | Avg Avg Avg Avg
std. std.
std. dev. dev. diff. | dev. diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.

1 0.0029 0.0016 | -44 | 0.0013 | -56 | 0.0030 0.0013 | -58 | 0.0007 | -77 | 1.2557 1.0260 | -18 | 0.6768 | -46 | 0.0642 0.0389 | -39 | 0.0184 | -71

0.0028 0.0018 | -37 | 0.0012 | -57 | 0.0016 0.0014 | -11 | 0.0007 | -59 | 1.1395 10169 | -11 | 0.6415 | -44 | 0.0477 0.0457 | -4 0.0196 | -59

0.0020 00020 | O 0.0013 | -34 | 0.0024 0.0012 | -48 | 0.0006 | -74 | 0.7727 1.0000 | 29 05182 | -33 | 0.0361 0.0261 | -28 | 0.0121 | -67

0.0037 0.0019 | -48 | 0.0014 | -62 | 0.0021 0.0016 | -25 | 0.0009 | -57 | 1.3014 09097 | -30 | 0.5896 | -55 | 0.0585 0.0409 | -30 | 0.0254 | -57

0.0051 0.0026 | -49 | 0.0023 | -54 | 0.0025 0.0015 | -40 | 0.0010 | -60 | 1.4529 0.9255 | -36 | 0.6721 | -54 | 0.0982 0.0536 | -45 | 0.0300 | -69

(<220 G2 B I~ IRV I S \V ]

0.0067 0.0033 | -51 | 0.0032 | -53 | 0.0030 0.0015 | -49 | 0.0012 | -60 | 1.6444 1.0125 | -38 | 0.8341 | -49 | 0.1416 0.0459 | -68 | 0.0453 | -68

7 0.0079 0.0040 | -49 | 0.0040 | -49 | 0.0032 0.0017 | -45 | 0.0014 | -55 | 1.8382 12678 | -31 | 1.0729 | -42 | 0.1159 0.0567 | -51 | 0.0667 | -42

8 0.0092 0.0053 | -42 | 0.0053 | -43 | 0.0041 0.0020 | -52 | 0.0019 | -54 | 2.0072 15369 | -23 | 1.339%4 | -33 | 0.1732 0.0836 | -52 | 0.1086 | -37

9 0.0116 0.0068 | -41 | 0.0064 | -45 | 0.0041 0.0023 | -44 | 0.0020 | -51 | 2.1765 18802 | -14 | 1.6092 | -26 | 0.1976 0.1020 | -48 | 0.1446 | -27

10 | 0.0135 0.0086 | -36 | 0.0083 | -39 | 0.0049 0.0029 | -40 | 0.0025 | -50 | 2.4519 24060 | -2 2.0248 | -17 | 0.2841 0.1282 | -55 | 0.1793 | -37

11 | 0.0174 0.0130 | -25 | 0.0120 | -31 | 0.0065 0.0048 | -27 | 0.0035 | -47 | 2.9053 30212 | 4 2.6930 | -7 0.4291 0.2295 | -47 | 0.3122 | -27

12 | 0.0207 0.0168 | -19 | 0.0159 | -23 | 0.0097 0.0093 | -5 0.0052 | -47 | 3.2287 33547 | 4 34101 | 6 0.7115 0.4418 | -38 | 0.5094 | -28

13 | 0.0251 0.0169 | -32 | 0.0187 | -25 | 0.0118 0.0133 | 12 0.0074 | -37 | 3.8763 3.6558 | -6 3.4751 | -10 | 0.9704 0.7430 | -23 | 0.8259 | -15

14 | 0.0278 0.0305 10 0.0357 28 0.0192 0.0113 | -41 | 0.0111 | -42 | 4.8908 48015 | -2 45328 | -7 14374 11124 | -23 | 1.2247 | -15

4 Unit of diff.: %.
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Table 6-5. Summary of Relative 95% Confidence Intervalsfor NO,, HC, CO,, and CO Mean Emissions for VSP Bins for the Time-

Average Approach
NO* HC? Co* co*
VSP Bins
mean |lower upper mean |ower upper mean lower upper mean lower upper
1 0.0011 -3 3 0.0007 -5 5 1.6337 -1 1 0.0110 -6 6
2 0.0009 -5 5 0.0004 -5 5 1.5254 -1 1 0.0065 -10 10
3 0.0006 -4 4 0.0007 -4 4 1.2050 -1 1 0.0051 -7 7
4 0.0016 -3 3 0.0006 -4 4 2.3308 -1 1 0.0114 -6 6
5 0.0025 -3 3 0.0008 -4 4 3.0882 -1 1 0.0156 -8 8
6 0.0034 -3 3 0.0011 -4 4 3.7963 -1 1 0.0224 -9 9
7 0.0044 -3 3 0.0013 -4 4 4.4899 -1 1 0.0287 -7 7
8 0.0058 -3 3 0.0016 -5 5 5.0543 -1 1 0.0413 -8 8
9 0.0070 -4 4 0.0019 -5 5 5.6496 -1 1 0.0526 -8 8
10 0.0085 -4 4 0.0023 -5 5 6.1914 -1 1 0.0728 -9 9
11 0.0112 -5 5 0.0031 -6 6 7.1117 -1 1 0.1304 -10 10
12 0.0144 -6 6 0.0045 -9 9 8.0558 -2 2 0.2712 -11 11
13 0.0171 -8 8 0.0060 -11 11 9.2945 -2 2 0.4878 -11 11
14 0.0198 -9 9 0.0098 -13 13 9.9292 -3 3 0.8101 -12 12

 Unit of mean: g/sec; Unit of lower and upper bound: %.
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Table 6-6. Summary of Relative 95% Confidence Intervalsfor NO,, HC, CO,, and CO Mean Emissions for VSP Bins for the Trip-

Average Approach.
NO* HC? Co? co?
VSP Bins
mean lower upper mean lower upper mean lower upper mean lower upper
1 0.0014 -15 15 0.0006 -25 25 1.9294 -7 7 0.0151 -32 32
2 0.0014 -16 16 0.0006 -30 30 1.9498 -6 6 0.0141 -39 39
3 0.0011 -21 21 0.0005 -28 28 1.6322 -7 7 0.0088 -36 36
4 0.0020 -12 12 0.0008 -25 25 2.6267 -4 4 0.0186 -27 27
5 0.0025 -13 13 0.0008 -22 22 3.1464 -4 4 0.0217 -30 30
6 0.0031 -13 13 0.0009 -20 20 3.5920 -3 3 0.0219 -26 26
7 0.0036 -14 14 0.0010 -20 20 4.0968 -4 4 0.0258 -27 27
8 0.0046 -14 14 0.0012 -21 21 4.6024 -4 4 0.0333 -31 31
9 0.0058 -15 15 0.0014 -21 21 5.1663 -5 5 0.0418 -31 31
10 0.0068 -16 16 0.0017 -22 22 5.6271 -5 5 0.0553 -29 29
11 0.0092 -20 20 0.0025 -26 26 6.7425 -6 6 0.1047 -30 30
12 0.0134 -23 23 0.0046 -36 36 8.0667 -7 7 0.2701 -29 29
13 0.0140 -24 24 0.0064 -41 41 9.0835 -8 8 0.5091 -29 29
14 0.0193 -32 32 0.0074 -31 31 9.6832 -10 10 0.8049 -28 28

& Unit of mean: g/sec; Unit of lower and upper bound: %.
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Table 6-7. Summary of Relative 95% Confidence Intervalsfor NO,, HC, CO,, and CO Mean Emissions for VSP Binsfor the Vehicle-

Average Approach
NO* HC? Co* co*
VSP Bins
mean lower upper mean |ower upper mean lower upper mean lower upper
1 0.0011 -26 26 0.0005 -31 31 1.4894 -10 10 0.0134 -30 30
2 0.0010 -26 26 0.0004 -35 35 1.5461 -9 9 0.0100 -42 42
3 0.0009 -31 31 0.0004 -36 36 1.3391 -8 8 0.0062 -42 42
4 0.0015 -20 20 0.0006 -35 35 2.3142 -6 6 0.0130 -42 42
5 0.0022 -23 23 0.0007 -31 31 3.0461 -5 5 0.0177 -37 37
6 0.0029 -23 23 0.0008 -31 31 3.7772 -5 5 0.0263 -37 37
7 0.0036 -24 24 0.0010 -31 31 4.4368 -5 5 0.0374 -39 39
8 0.0047 -24 24 0.0013 -32 32 5.1861 -6 6 0.0573 -41 41
9 0.0059 -24 24 0.0015 -29 29 5.9128 -6 6 0.0766 -41 41
10 0.0071 -25 25 0.0018 -29 29 6.5947 -7 7 0.1074 -36 36
11 0.0102 -26 26 0.0026 -29 29 7.8458 -7 7 0.2036 -33 33
12 0.0137 -27 27 0.0039 -30 30 9.0446 -9 9 0.3922 -30 30
13 0.0152 -30 30 0.0056 -32 32 10.2076 -8 8 0.6891 -29 29
14 0.0225 -40 40 0.0077 -37 37 11.3174 -10 10 1.1002 -28 28

4 Unit of mean: g/sec; Unit of lower and upper bounds: %.
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Figure 6-12. Comparison of Quantified Uncertainty in the Mean Emissions of NOy, HC, CO,, and CO for VSP Bins. Time-Average,
Trip-Average, and Vehicle-Average Approaches.
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The results for the “56-bin” approach given in the Appendix for the comparison of the three
weighting approaches are qualitatively similar to those shown in this chapter for the 14 VSP
bins.

6.3 Summary and Recommendation

The main findings from the comparison of the time, trip, and vehicle weighted approaches are as
follows:

» Compared to time-weighted approach, the means for the trip and vehicle weighted
approaches can be either higher or lower.

» The standard deviation decreases for the trip weighted approach, and further for the
vehicle weighted approach, when compared to the time weighted approach.

* Averaging time varies for both the trip and vehicle weighted approaches; thereisno
standard averaging time

* Theuncertainty in the average typically increases with more averaging over time,
because of smaller sample size.

» Thetrip and vehicle weighted approaches disproportionatel y give emphasis to trips or
vehicles with little data

Based upon these main findings, a judgment was made that the time weighted approach is the
preferred basis for development of a conceptual emission estimation model. The time weighted
approach offers flexibility in the future to weight the data by vehicle or trip if so desired. The
time weighted approach is predicated upon the assumption that data for a given vehicle
stratification (e.g., odometer reading and engine displacement) are representative of that strata.
It is easier from a software design and from an analysis perspective to work with time weighted
data, and such an approach will give more weight to vehicles or trips for which there are more
data, which isintuitively appealing.
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7 QUANTIFICATION OF VARIABILITY AND UNCERTAINTY

The estimation of uncertainty in the average emission rate for a mode depends upon the
variability in datafor the mode, the variance within the data, and the sample size. Key issues
addressed in the analyses include the adequacy of selected parametric probability distribution
models for representing variability in data, and whether the range of uncertainty in the mean
valuesis sufficiently small that a normality approximately can be used to represent uncertainty in
the mean. To provide insight into these issues, results are presented of analysis of both
variability and uncertainty based upon the VSP modes for one-second average data. This chapter
includes areview of methodologica considerations, quantification of variability for individual
modes, quantification of uncertainty for individual modes, and estimation of uncertainty for
driving cycles or trips.

7.1  Methodological Considerations

In uncertainty analysis, there are several sources of uncertainty that must be considered. The
first isthe scenario being modeled. The second isthe model itself. Thethird are the inputs to
the model. In practice, the term “model uncertainty” is typically understood to mean uncertainty
regarding the functional form of the model itself. Cullen and Frey (1999) address sources of
model uncertainty in detail in Chapter 3. Since MOVES is anticipated to be a data-driven model,
the uncertainty associated with model structure will be associated with the definitions of the bins.
For example, suppose that average emissions are sensitive to variation in engine displacement,
but that a bin-based approach isimplemented without using engine displacement as one of the
binning criteria. Then the “model” would fail to enable prediction of the sensitivity of average
emissions with respect to different engine displacements. In this case, one could argue that there
is uncertainty associated with an incomplete formulation of the model structure. Once the model
structure is correctly specified, atechnique can be applied for propagating uncertainty regarding
emissions in each bin to predict uncertainty of the final model results. This latter approach
addresses uncertainty in the inputs to the model (i.e. the data within each bin) but does not
address uncertainty associated with the model structure. The main objective thistask isto focus
on amethodology for propagating uncertainty in the model input data (e.g., the data used in each
bin, and the activity data used to weight the binned data) in order to predict uncertainty in the
estimated emissions. Another consideration is that for the model predictions to be accurate,
which means free of bias when comparing the average model predictionsto the true average
emissionsin the real world, the model must be developed based upon a representative data set.

There are several key considerations pertaining to this task, which are briefly summarized in the
following list, with more detailed discussion in the following text:

Variability

Uncertainty

Choice of empirical versus parametric probability distribution models
Averaging Time

Bottom-Up versus Top-Down Approaches
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7.1.1 Variability and Uncertainty

Variability refersto real differencesin emissions, such asfrom one vehicle to another.
Uncertainty refers to lack of knowledge regarding the true value of a quantity. Sources of
variability include differences in vehicle/engine design, operating conditions, maintenance, fuel
composition, and ambient conditions (as examples). Sources of uncertainty include random
sampling error, measurement error, lack of representativeness, and lack of information. For
emission factor purposes, we are typically interested in average emissions for a particular fleet of
vehicles, rather than in trying to predict emissions for an individual vehicle. Therefore, we are
typically more interested in characterizing uncertainty in the average emission estimate than in
characterizing inter-vehicle variability in the estimate. The distinction between inter-vehicle
variability and fleet average uncertainty has been demonstrated quantitatively in many recent
studies based upon different sources of data, including dynamometer (bag) data, RSD, and on-
board data (e.g., Kini and Frey, 1997; Frey, Bharvirkar, and Zheng, 1999; Frey and Zheng, 2002;
Frey, Rouphail, Unal, and Colyar, 2001; Frey, Unal, and Chen, 2002; Frey and Eichenberger,
1997a& b; Frey, Rouphail, Unal, and Dalton, 2000).

7.1.2 Empirical Distributions

EPA has emphasized that it prefers a data-driven approach to development of MOVES.
However, there is atrade-off between a purely data driven approach versus one that includes
some abstraction and aggregation. Specifically, in the context of quantitative analysis of
variability and uncertainty, there is a choice to be made regarding whether to base the analysis
upon empirical distributions or upon parametric distributions. In the former, each data point in
the database, such asfor asingle bin, is assigned a probability. Typically, data are assumed to be
equally weighted but this need not be the case in al situations. Based upon the data values and
the probability assigned to each data value, a step-wise empirical cumulative distribution
function can be developed. An example of a step-wise empirical cumulative distribution
function isgiven in Figure 7-1 for a data set with sample size of 10. A dataset such as this might
represent inter-vehicle variability in emissions.
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Figure 7-1. Example of a Stepwise Empirical Cumulative Distribution Function
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The mean and standard deviation of the empirical distribution are calculated directly from the
data. The empirical distribution has the advantage that it is “true” to the data. However, there
are several important potential disadvantages. (1) thereis no interpolation within the range of
observed data (i.e. the distribution has only discrete values corresponding to the original data set,
and there is zero probability of sampling any other value); (2) there is no plausible extrapolation
beyond the range of observed data; and (3) one must retain all of the datain order to characterize
the empirical distribution. Of these three potential disadvantages, the most important are the
second and third ones. The second one isimportant especially for small data sets. With any data
set, but especially smaller ones, it isunlikely that the observed highest value corresponds to the
true highest value, and that the observed lowest value corresponds to the true lowest value.

Thus, there is apossibility of failing to characterize the full range of variability. The third
potential disadvantage isthat one must retain al of the original data. Thisisnot aproblem for a
very small data set, but for avery large data set this could be cumbersome.

7.1.3 Parametric Distributions

An aternative to empirical distributionsis to use parametric probability distributions to represent
variability. The most commonly used parametric distributions, such as lognormal, gamma, or
Weibull, typicaly have only two parameters. The parameters are estimated using statistical
estimation approaches such as the method of matching moments or maximum likelihood
estimation. The distribution is fully specified once the values of its parameters are estimated.
Frey and Zheng (2002) give details of these methods, and such methods are incorporated into the
AuvTool software recently developed for EPA/ORD (Zheng and Frey, 2002). Thus, a data set of
any size can be represented based upon the type of distribution selected (i.e. lognormal, gamma,
Weibull) and the numerical values of its parameters.

Compared to empirical distributions, parametric distributions allow for interpolation within the
range of observed data, and for extrapolation to the upper and lower tails of the fitted
distribution. The latter is a potential advantage because it islikely that the observed range of
variability isless than the true range of variability as previously discussed. Because parametric
distributions provide a compact way of storing information regarding variability, the data storage
requirements will be less than if the empirical data set must be retained. However, there are
some key disadvantages to the use of parametric probability distributionsin MOVES. If new
data are obtained and must be used to update the distributions for variability, then it will be
necessary to combine the new data with the previous data, and repeat the process of fitting a
parametric distribution to the data. Alternatively, one could fit a distribution to the new data, and
compare the distribution fitted to the new data with the one that was fitted to the previous data.

If the two distributions are not significantly different from each other, then there would be no
compelling need to update the previous distribution. If they are different, then one could create a
new mixture distribution. For example, if the original fitted distribution was based upon 10,000
data values, and if the new distribution was estimated from a new set of 5,000 data values, a
mixture distribution could be defined in which 2/3 weight is given to the first (older) distribution
and 1/3 weight is given to the second (newer) distribution.

7.1.4 Averaging Time

The issue of averaging time must be explicitly considering regardless of the choice of the
empirical or parametric approach to characterizing variability. Theissue of averaging timeis
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also closely related to Subtask 1b and is addressed in Chapter 4 and implicitly in Chapter 6. For
example, suppose that the most basic form of datain MOVES is the average over afive second
time period. Any distribution developed directly from the 5-second data would represent
variability in emissions from one 5-second averaging time to another.

The data within a bin may include multiple data values for each of many vehicles. If the
objective isto estimate inter-vehicle variability, then all of the 5-second average data values for a
given vehicle should be averaged to arrive at a best estimate of the average emissions for a 5-
second period for agiven bin for that vehicle. This calculation would be repeated for all vehicles
in the bin. Then, the average values for each vehicle would be used to construct a distribution of
inter-vehicle variability within that bin. The range of variability will be influenced by the fact
that the calculations are based upon a 5-second time period. In contrast, if the objective were to
estimate variability in emissions for a 10-second time period, then the range of inter-vehicle
variability would tend to be somewhat smaller. Through simple calculations with the data, as
long as there are sufficient data and as long as the data can reasonably be assumed to be
statistically independent, it is easy to combine datafor two or more averaging time periods to
construct estimates of average emissions over longer time periods.

Calculation of inter-vehicle variability for different averaging timesis conceptually straight-
forward when all data are retained within abin and if empirical distributions are employed. If
parametric distributions are employed, then it is necessary to develop an analytical procedure for
adjusting the distribution based upon different averaging times. As a conceptual example, Frey
and Rhodes (1996) illustrated that the variability in power plant efficiency decreases as the
averaging increases from one hour, to one day, to one week, and so on. By analyzing example
datasets, it is possible to develop an estimate of how the variance of the datais expected to
decrease as the averaging time increases. For example, the variance is afunction of averaging
time. The mean would not change. Thus, if a distribution were fitted to 5-second averaging time
data, a new distribution could be estimated for 10-second averaging time assuming the same
mean and using the empirically-derived function of variance versus averaging time. We have
developed a conceptual example of an analytical averaging time adjustment method for the
parametric approach.

7.1.5 Normal and High Emitters

Regardless of whether empirical or parametric distributions are used, all datawithin abin
represent the distribution for variability, including both “normal” and “high” emitters whose data
fall into the given bin. Thus, there isno need for a discrete approach for normal and high
emitters as has been used in the past. However, it isimportant to have a data set that is
representative of both normal and high emitters when devel oping estimates of average emissions,
of variability in emissions, and of uncertainty in average emissions. The average emission rateis
calculated based upon all of the data within the bin, and therefore takes into account both normal
and high emitters. Similarly, the standard deviation is calcul ated based upon all of the data
within the bin, and therefore takes into account both normal and high emitters.

EPA impliesthat as part of future work, the effects of I/M programs on the distribution of

emission will be evaluated, but thisis not included as atask in thiswork. For example, an I/M
program might identify vehicles with emissions above some cut-off, and result in modification or
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repair of the vehicle so that its emissions are acceptable. The distribution of emissions can be
recal culated using numerical methods by truncating the distribution and by resampling from
within the range of acceptable emissions for those vehicles that successfully undergo repair or
modification. The numerical method can also be developed to take into account repeated failures
of some proportion of the vehicles and other considerations pertaining to IM programs.

7.1.6 Uncertainty Estimatesfor Final Model Results

A key objective of MOVES isto estimate uncertainty in final model results. To illustrate an
approach for estimating uncertainty in final model results, consider a simple conceptual example.
Suppose that we wish to know the fleet average tail pipe emissions for LDGVs operating on a
particular corridor. Asinput assumptions, we specify information such as the typical speed
profile (e.g., an average estimate of second-by-second speed), road grade at specific locations
along the corridor, proportions of vehiclesin different vehicle type categories, ambient
conditions, and proportion of vehiclesin different mileage accumulation categories for each
vehicle type. Based upon thistype of information, weights are calculated for each binin the
MOVES model. If we focus on a specific vehicle type and mileage accumul ation category, we
can narrow the discussion to consideration only of factors having to do with the speed profile and
the road grade. For each bin, an average emission rate can be estimated. Suppose that the
emissions are in units of grams per second. In order to estimate the total emissions associated
with agiven bin, there must be an estimate of the amount of time that the vehicle spends “in” the
bin (figuratively speaking), which can be obtained based upon the known or assumed speed
profile and based upon the road grade. For example, if aVVSP approach is used, the speed profile
and the road grade are used to estimate VV SP, and the numerical value of VSP for agiven
segment of the trip is used to determine from which bin an emission estimate is needed. Thus, in
this example, an emission estimate is a time-weighted average of the mass per time emission
rates obtained from different bins. The amount of time allocated to each of the binswill differ.

The uncertainty in the average emissions for the trip is based upon the uncertainty in the average
emission rates within each bin. Potentially, there could also be uncertainty regarding the amount
of time (or weight) assigned to each bin.

The uncertainty in the average emission rate is typically influenced by the following key
considerations: (1) random sampling error; (2) measurement error; and (3) lack of
representativeness. Thefirst of these three can be characterized based upon the variance in the
datafor variability and upon the sample size. For example, if normality conditions for the
sampling distribution of the mean are satisfied, the standard error of the mean is given the by
standard deviation for variability divided by the square root of the sample size. If normality
conditions are not satisfied, then a more accurate result can be obtained using bootstrap
simulation. For example, Frey and Rhodes (1996, 1998, 1999), Frey and Burmaster (1999),
Frey, Bharvirkar, and Zheng (1999), Frey and Bammi (2002a& b), Frey and Eichenberger
(1997b), and Frey and Zheng (2002a& b) have demonstrated the use of bootstrap simulation to
characterize uncertainty in mean emission rates in situations when data are positively skewed
and, in many cases, for small sample size. The range of uncertainty in the average emissionsis
typically asymmetric when thereis alarge amount of variability in the data and a small sample
size. The use of anormality assumption in such situations can lead to uncertainty estimates for
the mean that predict negative emission rates, which is physically impossible. Therefore, itis
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important to employ an appropriate approach for quantifying uncertainty associated with random
sampling error. We recommend the use of bootstrap techniques where appropriate, and we will
also explore simplified solutions obtained based upon the results of bootstrap simulation. For
example, we hypothesize that it is possible to develop generic solution algorithms for estimating
asymmetric uncertainty ranges in the mean when the underlying data for variability can be fitted
reasonably well by a standard parametric distribution and when the coefficient of variation
(standard deviation divided by the mean) and the sample size of the original data are known.
Such agorithms could be used to make a rapid estimate of uncertainty in average emissions
without need to run afull bootstrap simulation in every case.

Random sampling error is typically the dominant source of uncertainty in the mean when the
sample sizes are small. Random sampling error in the mean is relatively easy to quantify in
practice because it can be inferred from the standard deviation and the sample size of the data,
which are usually known.

Measurement error is a potentially important source of uncertainty and should be considered in
developing MOVES. One drawback of estimating uncertainty based only upon random
sampling error isthat for very large sample sizes, the random sampling error in the mean
becomes very small. If the measurement error has a random component, then the range of
observed variability in the datais larger than the true range of variability in the actual emissions.
Therefore, random measurement errors in the data are reflected in the range of uncertainty in the
mean emission rates estimated using techniques for random sampling error. However, if
measurement error has a systematic component (bias), statistical analysis alone will not detect
this without comparison to some benchmark. Measurement error may not be well known,
however. Therefore, this source of uncertainty can be difficult to quantify in practice. Sincethe
random component of measurement error influences the estimate of uncertainty in the mean
obtained from random sampling error-based estimated, the primary consideration in
incorporating measurement error more fully into the analysisis to properly distinguish random
measurement error from observed variability (e.g., Zheng, 2002) and to account for biasesin
measurements.

Uncertainty because of lack of representativeness cannot be quantified based upon statistical
analysis of variation within a dataset obtained by only one method. In order to quantify
nonrepresentativeness, which relates to bias (also referred to as systematic error or lack of
accuracy), it is necessary to have a benchmark of the true value of the quantity. By using on-
board data, a key goal of MOV ES isto develop emission estimates based upon real-world on-
road data. Thus, the fundamental basis of MOVES is to use representative, real world data. The
validation aspects of this project also aim at testing the representativeness of the data used for
model development. Overall, the focus of this project was on methods for quantifying
uncertainty associated with random sampling error, which also isinfluenced by random
measurement errors.

Monte Carlo simulation or similar numerical methods (e.g., Latin Hypercube Sampling) can be

used to propagate distributions for uncertainty in average emissions for abin to arrive at an
estimate of uncertainty in the total emissions (e.g., Frey and Rhodes, 1996; Frey and Zheng,
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2001; Zheng and Frey, 2002). In cases with linear models in which normality assumptions are
reasonabl e, analytical solutions can also be used (Cullen and Frey, 1999).

7.1.7 Bottom-Up and Top-Down Approaches

In the shoot-out, NCSU illustrated both a bottom-up and top-down approach for estimating inter-
vehicle variability and fleet average uncertainty in emissions. The bottom-up approach was
based upon estimating variability or uncertainty for individual modes and using statistical
formulas to estimate the variability or uncertainty in the total emissions. The top-down approach
was based upon comparing trip emissions predictions of the model with the actual observed trip
emissions. Based upon statistical analysis of the parity plots of predictions versus observations,
a 95 percent probability prediction interval was estimated for inter-vehicle variability and a 95
percent confidence interval was estimated for uncertainty in the mean.

In principle, the bottom-up approach will be the more flexible and rigorous approach, and it will
aso have an advantage of alowing for identification of which bins contributed the most to
uncertainty in the total emissions estimates. The top-down approach will typically be an easier
but less flexible approach, and it will not provide any insight regarding key sources of
uncertainty.

The primary approach explored in this chapter is the bottom-up approach. This approach is more
consistent with the EPA objective of characterizing variability in emissions within bins.
However, the top-down approach isillustrated in the validation comparisons of average driving
cycle emissions, as discussed in Chapter 9.

7.1.8 Summary of Methodological Consider ations

The focus here isto demonstrate a methodology for characterizing inter-vehicle variability in the
binned data and uncertainty in the estimate of the final model result. The methodology was
demonstrated for the pilot modal emission rates. The emphasis of the work was on a parametric
distribution-based approach. The parametric approach was selected because of the attractiveness
of compactly representing large data sets within a bin using only a distribution type and a few
parameters. The adequacy of apurely parametric approach is assessed. A method for properly
characterizing the effect of averaging time on variability (and, in turn, on uncertainty) is
demonstrated.

7.2 Quantification of Variability

Parametric probability distribution models that were considered for fit to datainclude normal,
lognormal and Weibull distributions. These distributions were selected because they often offer
good fitsto dataset. In particular, the lognormal distribution is often a good candidate for fitting
to non-negative positively skewed data, and can be theoretically justified as a descriptor of
emissions data because both emissions and the lognormal distribution are based upon
multiplicative processes. The Weibull distribution can also be used to fit to nonnegative
positively skewed data. However, the Weibull distribution has additional flexibility to take on
different shapes and often has a shorter upper tail than the lognormal distribution does, when
viewed as a cumulative distribution function. The less “tail-heavy” nature of the Weibull
distribution often provides an empirically better fit than does the lognormal distribution. The
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normal distribution often provides a good fit but is appropriate for use with non-negative data
only if theratio of the standard deviation to the mean is sufficiently small (e.g., around 0.2 or
less). Otherwise, the normal distribution may lead to predictions of negative values with
unacceptable frequency. In general, it isusually not appropriate to use the normal distribution to
represent variability within abin, but it is often appropriate to use the normal distribution to
describe uncertainty in the average.

The probability density function (PDF) of the normal distributionis:

1 —(x-p)?
f(x) = e —o0 < X< oo (7-1)
\N2ro
The PDF of lognormal distribution:
~(Inx-¢£)*
1 1 2
f(x)=——=e * 0< X< oo (7-2)
N2 X

The PDF of the Weibull distribution, shape parameter k and scale parameter c:

F(x) = xie 0< X< oo (7-3)
C

Fitting of parametric distributions to data was conducted using “ SAS’ software. Criteriafor
selecting a best fit are inherently subjective, but can be aided by the use of statistical goodness-
of-fit tests (e.g., Cullen and Frey, 1999). Each such test emphasizes a particular criterion for a
good fit, which may or may not be relevant to the needs of a particular analyst or assessment.
Furthermore, with very large sample sizes, which are often the case for data sets based upon
second-by-second data, the goodness-of-fit (GOF) tests are very sensitive and may reject a
distribution that in other respects would be acceptable. For example, avisua comparison of the
distribution and the data may indicate that the distribution provides a*“good” fit even though the
fit was rejected by the GOF test.

As examples, results of fitting parametric distributions to VSP mode data are shown for NO,
HC, CO,, and CO in Figures 7-1, 7-2, 7-3 and 7-4 for VSP Modes 1, 4, 8 and 12, respectively.
The purpose hereisto present representative results. Graphical analysis was done, however, for
al bins, even though not all graphs are shown here. The graphs were generated using SAS. For
VSP Mode 1, the Weibull distribution fitted to the NOy data appears to adequately describe the
genera characteristics of the data, including the central tendency, the upper tail, and the positive
skewness. However, there are some deviances in the fit that are noticeable, such between the 50™
and 80" percentiles. Similarly, the lognormal distribution fit to the CO, data offers a
qualitatively good fit, but deviates from the datain some respects. The deviations of the fitted
distribution from the data in these two cases are not large in an absolute sense, and are likely to
be acceptable. In contrast, the fitted distributions for HC and CO for Mode 1 do not appear to
offer good fits. For Mode 4, al the distributions fitted appear to capture the key trendsin the
datafor al four pollutants. For Mode 8, the fits are generally good for all four pollutants,
especially for NO. For Mode 12, the fitted distributions appear to agree with the data.
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Figure 7-1. Variability in NOy, HC, CO,, and CO Emissions for VSP Mode #1 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,
Odometer reading < 50,000 miles, Engine Displacement < 3.5 liters.
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Figure 7-2. Variability in NOy, HC, CO,, and CO Emissions for VSP Mode #4 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,
Odometer reading < 50,000 miles, Engine Displacement > 3.5 liters.
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Figure 7-3. Variahility in NOy, HC, CO,, and CO Emissions for VSP Mode #8 Characterized by
Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time Average,
Odometer reading > 50,000 miles, Engine Displacement < 3.5 liters.
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Figure 7-4. Variability in NOy, HC, CO,, and CO Emissions for VSP Mode #12 Characterized
by Empirical Probability Distribution and Fitted Parametric Probability Distribution, Time
Average, Odometer reading > 50,000 miles, Engine Displacement > 3.5 liters.
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Overall, in most cases, the fitted distributions appear to compare well with the data. Because
statistical GOF tests are too sensitive, from a practical perspective, when the sample size
becomes large, alternative criteriafor evaluating goodness-of-fit were sought. One such criterion
isto evaluate the absol ute difference between the mean of the data and the mean of the fitted
distribution. A second criterion isto evaluate the absolute difference of the standard deviation of
the data versus that of the fitted distribution. Therefore, these absolute differences were
calculated for each of the 14 V SP modes, for each of the four strata by engine displacement and
odometer reading reading, and for each of the four pollutants.

The distributions were fitted to the data using Maximum Likelihood Estimation (MLE). The
choice of MLE was made on the basis that MLE is commonly used and is considered to be a
more statistically efficient method than other approaches, such as the Method of Matching
Moments (MoMM) (Cullen and Frey, 2002). However, MLE has a potential disadvantage in
that the central moments of the fitted distribution (e.g., the mean and standard deviation) may not
be the same as those of the data to which the distribution wasfit. In contrast, for MOMM
estimates of the distribution parameters, the fitted distribution will have a mean and standard
deviation the same as that of the data. In most cases, the difference of the means and standard
deviations between fitted distributions and the data are not large in an absolute sense, as shown
in Tables 7-1 and 7-2, respectively. For example, for VSP Bins 1101 through 1114, which
represent data for odometer reading < 50,000 miles, and engine displacement < 3.5 liters, the
largest absolute deviation in the mean values for NOy isfor Mode 12 of this strata (identified as
VSPBin 1112 in Table 7-1), with an absolute difference of 0.0004 g/sec. Thisdifferenceisin
comparison to a mean from the data set of 0.0121 g/sec, and a mean from the fitted distribution
of 0.0125 g/sec. Therefore, on arelative basis, this difference is only approximately three
percent of the mean of the data. For the other 13 modes for this pollutant and strata, the absolute
differences are smaller. However, in some cases, the relative differences are very large. For
example, for Mode 1104, the absolute difference is -0.00028 g/sec compared to a data mean of
0.00117. Thus, therelative difference in this caseis-24 percent. However, the absolute
difference in the mean for Mode 1104 is only 70 percent of the absolute difference for Mode
1112. Typically, the largest absolute differences are small compared to the highest average
emission rates among the modes for given pollutant and strata, although there are some
exceptions (e.g., Mode 1211 for CO). The exceptions typically point to situationsin which a
single component distribution cannot provide a good fit because the data are inherently some
type of mixture distributions.

Based upon areview of the resultsin Tables 7-1 and 7-2, criteriafor discriminating good and bad
fit were proposed for different pollutants. These criteria are shown in the second column of
Table 7-3. For example, for NOy, if the absolute difference in the mean of the MLE fitted
distribution versus that of the datais larger than the magnitude of the criteriavalue, whichis
0.001 g/sec, thefit isjudged not to be good. When the absolute differences in the mean of the
fitted distribution is less than the criteria value, the fit was also judged to be acceptable. Of the
56 modes, 49 of the modes for NOy, have differences in the mean between the data and the fitted
distribution of less than the criteriavaue. For CO, 48 of the modes satisfy the criteriavaue, for
HC 54 of the modes satisfy the critera, and for CO, al 56 modes satisfy the criteria value.
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Table 7-1. Comparison of Mean between Empirical Data Set and Fitted Parametric Distributions, Absolute Basis

NO,° HC® co? co’

VSPBIin® | empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff
1101 0.000901 0.000714 | -0.000187 | 0.000450 | 0.000460 0.0000103 1.67 1.68 0.00901 0.00781 0.00644 -0.00136
1102 0.000628 0.000554 | -0.0000745 | 0.000257 0.000187 -0.0000701 1.46 1.45 -0.0122 0.00391 0.00248 -0.00143
1103 0.000346 0.000221 | -0.000124 | 0.000406 | 0.000290 -0.000116 114 111 -0.0213 0.00335 0.00232 -0.00103
1104 0.00117 0.000894 | -0.000279 | 0.000432 0.000357 -0.0000748 2.23 2.26 0.0223 0.00834 0.00877 0.000437
1105 0.00171 0.00167 | -0.0000384 | 0.000530 0.000506 -0.0000242 2.92 2.92 0.00448 0.0110 0.00693 -0.00403
1106 0.00237 0.00234 | -0.0000288 | 0.000705 0.000709 0.00000383 353 352 -0.00774 0.0170 0.0101 -0.00691
1107 0.00310 0.00303 | -0.0000746 | 0.000822 0.000947 0.000124 411 4.09 -0.0135 0.0200 0.0134 -0.00662
1108 0.00423 0.00440 0.000162 0.000976 0.00121 0.000235 4.64 462 -0.0192 0.0292 0.0182 -0.0110
1109 0.00507 0.00509 0.0000255 0.00111 0.00137 0.000261 5.16 513 -0.0280 0.0355 0.0230 -0.0125
1110 0.00587 0.00601 0.000146 0.00144 0.00184 0.000396 5.63 5.60 -0.0295 0.0551 0.0823 0.0272
un 0.00762 0.00776 0.000135 0.00206 0.00200 -0.0000595 6.53 6.52 -0.0160 0.114 0177 0.0630
112 0.0121 0.0125 0.000398 0.00337 0.00309 -0.000285 7.59 7.58 -0.00516 0.208 0.381 0.174
1113 0.0155 0.0152 -0.000267 0.00486 0.00564 0.000787 9.02 9.02 -0.00434 0.442 2.08 1.63
1114 0.0179 0.0180 0.000167 0.0109 0.0185 0.00759 10.1 10.1 0.00887 0.882 15.8 15.0
1201 0.000290 0.000176 | -0.000113 | 0.000548 | 0.000161 -0.000387 157 1.56 -0.00525 0.0177 0.00883 -0.00886
1202 0.000223 0.000112 | -0.000111 | 0.000222 | 0.0000357 -0.000187 1.44 1.38 -0.0685 0.00861 0.00109 -0.00752
1203 0.000174 | 0.0000733 | -0.000101 | 0.000272 | 0.0000441 -0.000228 147 143 -0.0426 0.00848 0.00219 -0.00629
1204 0.000719 0.000682 | -0.0000374 | 0.000472 | 0.000125 -0.000347 2.61 2.61 -0.00628 0.0145 0.00560 -0.00894

(Continued on next page).
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Table 7-1. Continued.

NO,® HCP Ccoy° co®

VSPBIin® | empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff
1205 0.00114 0.00106 -0.0000757 | 0.000754 0.000261 -0.000493 352 3.49 -0.0305 0.0257 0.0125 -0.0132
1206 0.00159 0.00140 -0.000185 0.000702 0.000477 -0.000225 4.65 462 -0.0306 0.0252 0.0418 0.0166
1207 0.00237 0.00234 -0.0000344 | 0.000944 0.00102 0.0000781 5.64 5.57 -0.0612 0.0411 0.0954 0.0543
1208 0.00410 0.00427 0.000169 0.00144 0.00128 -0.000161 6.60 6.57 -0.0311 0.0766 0.243 0.166
1209 0.00612 0.00609 -0.0000310 0.00171 0.00163 -0.0000792 7.65 7.59 -0.0594 0.129 0.280 0.151
1210 0.00731 0.00735 0.0000373 0.00261 0.00240 -0.000207 8.81 8.75 -0.0629 0.151 0.210 0.0592
1211 0.0132 0.0133 0.000155 0.00352 0.00441 0.000884 117 116 -0.0625 0.355 157 1.22
1212 0.0127 0.0122 -0.000503 0.00765 0.00918 0.00152 14.5 145 -0.00549 0.882 0.967 0.0856
1213 0.0154 0.0175 0.00210 0.00667 0.00664 -0.0000266 15.7 15.6 -0.0425 0.755 0.834 0.0788
1214 0.0203 0.0277 0.00742 0.00657 0.00658 0.00000652 17.4 17.4 0.00448 0.905 0.930 0.0256
2101 0.00101 0.000933 | -0.0000812 | 0.000901 | 0.000827 -0.0000746 154 154 -0.00782 0.0110 0.00921 -0.00182
2102 0.00104 0.000888 -0.000154 | 0.000901 | 0.000880 -0.0000215 1.60 1.61 0.00584 0.00872 0.0155 0.00680
2103 0.000423 0.000416 | -0.00000691 | 0.000835 | 0.000936 0.000100 113 1.10 -0.0352 0.00468 0.00459 | -0.0000939
2104 0.00161 0.00171 0.0000994 0.00103 0.00113 0.000103 2.39 2.39 0.00229 0.0122 0.0107 -0.00149
2105 0.00264 0.00270 0.0000615 0.00125 0.00151 0.000262 321 321 -0.00404 0.0167 0.0148 -0.00194
2106 0.00379 0.00386 0.0000704 0.00166 0.00156 -0.000100 3.96 3.94 -0.0216 0.0233 0.0209 -0.00236
2107 0.00510 0.00514 0.0000440 0.00209 0.00209 | -0.0000000742 475 4.74 -0.0167 0.0293 0.0275 -0.00179

(Continued on next page)
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Table 7-1. Continued.

NO,? HCP Cco° co®
VSPBIin® | empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff
2108 0.00637 0.00652 0.000146 0.00233 0.00232 -0.0000162 5.37 5.34 -0.0317 0.0369 0.0344 -0.00255
2109 0.00766 0.00775 0.0000836 0.00282 0.00280 -0.0000195 5.94 5.92 -0.0168 0.0495 0.0557 0.00617
2110 0.00991 0.0100 0.000115 0.00298 0.00303 0.0000464 6.43 6.39 -0.0347 0.0638 0.0652 0.00148
2111 0.0127 0.0130 0.000290 0.00379 0.00380 0.0000159 7.07 7.04 -0.0240 0.105 0.0834 -0.0220
2112 0.0144 0.0145 0.000105 0.00457 0.00462 0.0000482 7.62 7.60 -0.0149 0.248 0.170 -0.0775
2113 0.0160 0.0162 0.000209 0.00570 0.00569 -0.0000096 8.32 8.30 -0.0204 0.413 0.375 -0.0381
2114 0.0167 0.0170 0.000242 0.00716 0.00721 0.0000479 8.48 8.46 -0.0145 0.625 0.701 0.0762
2201 0.000725 0.000619 | -0.000106 | 0.000863 0.000530 -0.000333 1.65 1.63 -0.0178 0.0203 0.0216 0.00136
2202 0.000504 0.000489 | -0.0000148 | 0.000300 0.000219 -0.0000813 1.76 1.68 -0.0833 0.00818 0.00332 -0.00486
2203 0.000661 0.000754 | 0.0000929 | 0.000323 0.000266 -0.0000575 1.56 1.48 -0.0815 0.00483 0.00211 -0.00272
2204 0.00252 0.00292 0.000406 0.000449 0.000409 -0.0000398 2.95 2.94 -0.00368 0.0123 0.0139 0.00157
2205 0.00585 0.00695 0.00110 0.000818 0.000637 -0.000181 413 412 -0.00309 0.0220 0.0209 -0.00115
2206 0.00836 0.00928 0.000919 0.00122 0.00106 -0.000155 5.34 5.34 -0.00370 0.0451 0.0447 -0.000326
2207 0.0106 0.0113 0.000694 0.00211 0.00200 -0.000108 6.51 6.50 -0.00441 0.0775 0.0765 -0.00100
2208 0.0145 0.0155 0.00106 0.00439 0.00453 0.000134 7.60 7.60 -0.00391 0.167 0.152 -0.0144
2209 0.0164 0.0175 0.00110 0.00464 0.00450 -0.000133 8.77 8.77 -0.00112 0.170 0.167 -0.00262

(Continued on next page).

130




Table 7-1. Continued.

NO,? HCP coy co®
VSPBIin® | empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff empirical fitted dist diff
2210 0.0198 0.0213 0.00154 0.00496 0.00461 -0.000356 10.4 10.4 -0.00409 0.264 0.248 -0.0153
2211 0.0305 0.0326 0.00209 0.00663 0.00643 -0.000203 12.8 12.8 -0.00133 0.339 0.363 0.0242
2212 0.0342 0.0341 -0.0000985 0.0109 0.0107 -0.000221 15.0 15.0 0.00141 0.825 0.823 -0.00141
2213 0.0434 0.0433 -0.000115 0.0166 0.0166 0.0000243 16.9 16.9 0.00567 1.44 0.242 -1.20
2214 0.0690 0.0688 -0.000151 0.0271 0.0275 0.000473 18.9 18.9 0.00168 2.18 2.40 0.223

4 First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading <
50,000 miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22:
odometer reading > 50,000 miles and engine displacement > 3.5 liters.

® Unit of mean: g/sec; Unit of diff.; g/sec.
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Table 7-2. Comparison of Standard Deviation between Empirical Data Set and Fitted Parametric Distributions, Absolute Basis

NO,° HC® co? co’

VSPBIin® | empirical | fitted dist diff empirical | fitted dist diff empirical | fitted dist diff empirical | fitted dist diff
1101 0.00295 0.00181 -0.00114 0.00283 0.00257 -0.000259 1.39 1.27 -0.118 0.0589 0.0873 0.0284
1102 0.00256 0.00155 -0.00101 000112 | 0000921 -0.000202 121 1.20 -0.0122 0.0367 0.0307 -0.00602
1103 0.00154 0.000544 | -0.00100 0.00150 0.00157 0.0000668 0.816 0.832 0.0155 0.0216 0.0267 0.00509
1104 0.00343 000262 | -0.000809 | 0.00141 0.00170 0.000290 1.38 148 0.0925 0.0519 0.164 0112
1105 0.00442 000469 | 0000269 | 0.00160 0.00223 0.000630 153 152 -0.00811 0.0968 0.0195 -0.0774
1106 0.00567 000629 | 0000621 | 000237 0.00308 0.000714 167 1.68 0.0161 0.155 0.0201 -0.126
1107 0.00671 0.00799 0.00128 0.00240 0.00419 0.00179 177 1.79 0.0204 0.106 0.0378 -0.0684
1108 0.00794 0.0109 0.00298 0.00281 0.00542 0.00260 1.94 197 0.0319 0.152 0.0536 -0.0987
1109 00101 0.0127 0.00259 0.00267 0.00559 0.00292 2.09 213 0.0378 0.165 0.0674 -0.0981
1110 0.0110 0.0142 0.00318 0.00369 0.00845 0.00477 2.35 2.40 0.0502 0.252 2.40 215
1111 0.0147 0.0166 0.00196 0.00545 0.00335 -0.00210 2.72 2.66 -0.0570 0.396 5.86 5.46
niz 0.0201 0.0240 0.00394 0.0104 0.00507 -0.00534 2.99 3.00 0.00935 0571 134 128
113 0.0247 0.0240 -0.000653 0.0133 0.0210 0.00769 364 364 -0.00180 0.906 173 172
1114 0.0277 0.0304 0.00269 0.0249 0.195 0.170 5.37 535 -0.0248 152 6426 6424
1201 0.00135 0.000495 | -0.000858 | 0.00246 0.00102 -0.00145 0.752 0.775 0.0226 0.0876 0.240 0.153
1202 0.00142 0000303 | -0.00112 000177 | 0.0000879 -0.00169 0.730 0.990 0.260 0.0764 0.00895 -0.0674
1203 0.00125 0.000185 | -0.00107 000194 | 0000121 -0.00182 0.784 0.862 0.0785 0.0697 0.0296 -0.0401
1204 0.00228 000217 | -0.000105 | 000246 | 0.000475 -0.00199 1.08 0.981 -0.100 0.0803 0.0868 0.00648

(Continued on next page)
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Table 7-2. Continued.

NO,° HC® co co

VSPBIn® | empirical | fitted dist diff empirical | fitted dist diff empirica | fitted dist diff empirica | fitted dist diff
1205 0.00334 0.00345 0.000116 0.00360 0.00121 -0.00239 121 132 0.116 0.139 0.260 0.121
1206 0.00440 0.00454 0.000145 0.00277 0.00269 -0.0000782 1.79 1.86 0.0780 0113 119 1.08
1207 0.00552 0.00628 0.000753 0.00278 0.00726 0.00448 231 2.44 0.132 0.166 3.05 2.89
1208 0.00813 0.0104 0.00225 0.00722 0.00729 0.0000726 2.64 2.75 0.110 0.286 155 152
1209 0.0140 0.0138 -0.000243 | 0.00443 0.00691 0.00248 251 2.66 0.155 0.411 114 110
1210 00145 0.0151 0.000630 0.00909 0.0107 0.00159 2.80 2.94 0.138 0475 3.65 318
1211 0.0245 0.0281 0.00358 0.00699 0.0218 0.0148 338 345 0.0633 0934 126 125
1212 0.0230 0.0187 -0.00433 0.0117 0.0375 0.0258 253 236 -0.168 1.45 2.78 134
1213 0.0359 0.0766 0.0408 0.00017 0.00937 0.000205 1.95 202 0.0729 1.10 175 0.650
1214 0.0378 0122 0.0846 0.00769 0.00744 -0.000244 221 222 0.0116 118 141 0.234
2101 0.00229 000198 | -0.000316 | 0.00225 0.00158 -0.000666 111 1.09 -0.0207 0.0471 0.0220 -0.0251
2102 0.00257 000215 | -0.000424 | 000228 0.00178 -0.000505 111 105 -0.0655 0.0371 0.225 0.188
2103 0.00168 0000959 | -0.000724 | 000312 0.00689 0.00377 0.713 0.870 0.157 0.0286 0.0477 00191
2104 0.00334 0.00442 0.00108 0.00287 0.00614 0.00327 117 118 0.00910 0.0501 0.0226 -0.0274
2105 0.00467 0.00587 0.00120 0.00294 0.00717 0.00423 1.29 133 0.0447 0.0669 0.0279 -0.0390
2106 0.00658 000751 | 0000929 | 0.00377 0.00260 -0.00117 1.36 144 0.0770 0.0828 0.0353 -0.0475
2107 0.00802 000859 | 0.000563 | 0.00403 0.00317 -0.000860 1.50 157 0.0697 0.0809 0.0424 -0.0385

(Continued on next page)
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Table 7-2. Continued.

NO,° HC® co co

VSPBIn® | empirical | fitted dist diff empirical | fitted dist diff empirica | fitted dist diff empirical | fitted dist diff
2108 0.00901 00101 0.00109 0.00355 0.00323 -0.000321 164 172 0.0744 0.102 00511 -0.0507
2109 0.0107 0.0114 0.000657 | 0.00520 0.00390 -0.00130 1.81 1.87 0.0537 0.147 0.177 0.0300
2110 00135 00145 0000959 | 0.00484 0.00420 -0.000640 1.96 2,05 0.0877 0.209 0.207 -0.00169
2m 0.0163 00182 0.00187 0.00687 0.00513 -0.00175 2.30 2.38 00775 0331 0.242 -0.0896
2112 0.0166 00185 0.00182 0.00707 0.00621 -0.000863 245 2.56 0.101 0.665 0.614 -0.0508
2113 0.0186 0.0214 0.00278 0.00814 0.00765 -0.000490 3.00 3.09 0.0927 0918 227 135
2114 0.0182 0.0213 0.00313 0.0100 0.00945 -0.000532 3.19 3.25 0.0524 1.26 6.02 4.76
2201 0.00203 000142 | -0.000610 | 0.00572 0.00192 -0.00380 0.614 0.685 00715 0114 0.489 0375
2202 0.00137 000126 | -0.000111 | 000132 | 0.000455 -0.000860 0.676 0.856 0.181 0.0762 0.0510 -0.0252
2203 0.00181 000161 | -0.000202 | 000249 | 0.000568 -0.00192 0.662 113 0464 0.0835 0.0219 -0.0615
2204 0.00402 0.00713 000311 | 0000901 | 0000634 | -0.000267 0.735 0676 -0.0582 0.0623 0.163 0.101
2205 0.00834 0.0186 0.0102 0.00430 0.00106 -0.00324 0.886 0.836 -0.0500 0.0699 0.0493 -0.0206
2206 00117 0.0206 0.00890 0.00249 0.00211 -0.000377 1.08 1.02 -0.0627 0.120 0.102 -0.0183
2201 00133 00211 0.00785 0.00404 0.00531 0.00128 135 1.26 -0.0835 0.196 0.157 -0.0396
2208 0.0178 0.0287 0.0109 0.0111 0.0172 0.00608 1.44 1.36 -0.0803 0.430 0.294 -0.136
2209 0.0200 00315 00115 0.00739 0.00671 -0.000680 1.50 147 -0.0298 0.329 0.270 -0.0596

(Continued on next page)
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Table 7-2. Continued.

NO,® HC" co;’ co
VSPBIn® | empirical | fitted dist diff empirical | fitted dist diff empirica | fitted dist diff empirical | fitted dist diff
2210 0.0261 0.0422 00161 0.00948 0.00751 -0.00196 183 174 -0.0961 0.651 0.909 0.257
211 0.0330 0.0521 0.0192 0.0106 0.00980 -0.000809 214 2.08 -0.0507 0.706 128 0577
2212 0.0466 0.0518 0.00521 0.0168 0.0164 -0.000441 1.62 1.65 0.0221 1.29 1.57 0272
2213 0.0493 0.0484 -0.000869 0.0179 0.0202 0.00228 239 2.44 0.0568 143 0.369 -1.06
2214 0.0572 0.0630 0.00582 0.0327 0.0406 0.00795 210 207 -0.0313 2.05 3.80 175

4 First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading <

50,000 miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22:

odometer reading > 50,000 miles and engine displacement > 3.5 liters.
® Unit of mean: g/sec; Unit of diff.; g/sec.
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Table 7-3. Comparisons of Empirical Data Set and Fitted Parametric Distributions, Average
Difference for Good Fits, Fitting Based upon MLE

No. Mean Standard deviation
Pollutant | St | Of i Abs. diff Rl | Empirical Abs. diff | RE-
(9/sec) good diff diff
ood | (giser) =) | G | @) @) | G
NO, 0001 | 49 0.00812 0.0000404 | 050 0.0116 0.00119 10
HC 0001 | 54 0.00302 -0.0000192 | -0.64 | 0.00570 0000611 | 11
co, 0.1 56 6.27 20,0186 20.30 181 0.0372 2.1
CO 0.1 48 0.140 0.00511 36 0.304 0.500 160

2 A fit is good when its absolute difference in the mean is smaller than criteria value.

Table 7-4. Comparisons of Empirical Data Set, Fitted Lognormal Distributions Based upon
MLE, and Fitted Lognormal Distributions Based upon MoMM, for the Two Worst

MLE Fitsfor CO.
V'SP MLE MoMM
Bina Mean Standard Deviation Mean Standard Deviation
empirical fgit;d diff | empirical fgitgd diff | empirica fgit;d diff | empirica ﬁ(}it;d diff
1113 0.442 2.08 1.63 0.906 173 172 0.442 0.442 0 0.906 0.906 0
1114 0.882 15.8 15.0 152 6426 | 6424 0.882 0.882 0 152 152 0

2 First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters.

From Table 7-3, it is apparent that the relative difference in the mean values of the fitted
distribution and the data is less than one percent for NOy, HC, and CO; for the vast mgjority of
the modes, and less than four percent for the majority of the modesin the case of CO. The
estimated standard deviation tends to be more sensitive to deviations of the fitted distribution
from the data than does the estimated mean. For most of the modes and pollutants, the relative
difference between the standard deviation of the fitted distribution versus that of the datais less
than 10 percent, but there are some examples for CO in which the difference is substantially
larger.

In this study, MLE was used to estimate parameters of fitted parametric distributions for
representing variability in population. If MOMM was used, there would have been no difference
in the mean and standard deviation between the empirical sample data and fitted distribution, as
shown for selected examplesin Table 7-4. 1n these two examples, which represent the worst fits
of parametric distributions to modal datafor CO, the MoMM fitted distribution is confirmed to
have the same mean and standard deviation as the original data, whereas both the mean and
standard deviations of the distribution fitted using MLE are substantially different than the
values estimated directly from the data. However, it isnot likely that the mean and the standard
deviation of population will be exactly the same as those of sample. The basis for fitting a
distribution using MLE is to estimate a distribution from which the data were most likely to have
been a sample, which is adifferent criterion than that for estimating a distribution using MoMM.
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Table 7-5. Recommendation of Mixture Distributions for Two Worst Fits

. . . . Dist. 1° Dist. 2°
Bin® | Pollutant Dist. 1 Dist. 2 | Weight Paal | Paa2 | Paal | Paa2

1113 CO Lognormal | Lognormal | 0.7878 | 2.3619 | -4.7782 | 0.6782 | 0.329

1114 CO Lognormal | Lognormal | 0.6367 | 2.1368 | -5.4363 | 0.7358 | 0.6043

2 First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <
3.5 liters.
® Para 1 of lognormal is ¢ and Para 2 of lognormal is &.

Even though MoMM results in the same estimates of the mean and standard deviation as the
original data set, MoOMM does not always provide a good fit. For example, distributions fitted
using both MLE and MoMM for the case of CO emissions for odometer reading < 50,000 miles,
and engine displacement < 3.5 Liters, are shown in comparison to the empirical distribution of
the datafor VSP Mode 14 in Figure 7-5. A similar exampleis given for Mode 13, for CO for the
same odometer reading and engine displacement category in Figure 7-6. Figures 7-5 and 7-6
suggest that neither MLE nor MoMM provides an ideal fit compared to the data. When
comparing MLE and MoMM fits for these two cases, it appears that MLE provides a better fit
for the lower percentiles of the distribution and MoMM provides a better fit for the upper tail of
the distribution. However, it isaso clear in these examples that the data are not well represented
by a single component parametric distribution, especially in the central portion of the
distribution. A key question is whether occasional disagreements between fitted distributions
and data, such as these, can be tolerated in the model. Alternatively, either mixture distributions
or empirical distributions can be used to represent data such asthese. For the same data as
shown in Figure 7-5, an illustration of the use of afitted mixture distribution is shown in Figure
7-7. Similarly, for the same data as shown in Figure 7-6, an illustration of the use of afitted
mixture distribution is given in Figure 7-8. The parameters of the mixture distributions shown in
Figures 7-7 and 7-8 are given in Table 7-5. The mixture distributions comprised of only two
lognormal components are shown to agree very well with the empirical datain both cases. The
mixture distributions were estimated using MLE as described by Zheng (2002) using a modified
version of AuvTool. These example case studiesillustrate that mixture distributions can be an
effective approach for achieving a good fit when a single component distribution is not adequate.
These case studies also suggest that the data in these modes may be comprised of two or more
subpopulations that might reflect different activity patterns or different vehicle characteristics.

Table 7-6 summarizes the type of parametric distribution and the parameters of the distribution
fitted to the data for each pollutant and mode based upon MLE approach.
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Figure 7-5. Comparison of Fitted Parametric Distribution Based upon Method of Matching
Moment and Maximum Likelihood Estimation, Mode 14 CO Emissions, Odometer reading <
50,000 miles, Engine Displacement < 3.5 liters.
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Figure 7-6. Comparison of Fitted Parametric Distribution Based upon Method of Matching
Moment and Maximum Likelihood Estimation, Mode 13 CO Emissions, Odometer reading <
50,000 miles, Engine Displacement < 3.5 liters
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Figure 7-7. Mixture Distribution Comprised of Two Lognorma Components Fitted to Data for
Mode 14 CO Emissions for Odometer Reading < 50,000 miles and Engine Displacement < 3.5
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Figure 7-8. Mixture Distribution Comprised of Two Lognorma Components Fitted to Data for
Mode 13 CO Emissions for Odometer Reading < 50,000 miles and Engine Displacement < 3.5

Liters.
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Table 7-6. Summary of Single Component Parametric Probability Distributions Fitted Using MLE for Variability in VSP Modes for
NO,, HC, CO,, and CO for Vehicles of Different Engine Displacement and Odometer Reading.

NO, HC Co, co
VSP Bin®
Dist® paral para 2 Dist paral para 2 Dist paral para 2 Dist paral para 2

1101 W 3.00E-04 4.58E-01 L 1.86E+00 -9.42E+00 W 1.83E+00 1.34E+00 L 2.28E+00 -7.65E+00
1102 W 2.00E-04 4.29E-01 L 1.80E+00 -1.02E+01 W 1.54E+00 1.21E+00 L 2.24E+00 -8.52E+00
1103 W 9.74E-05 4.68E-01 L 1.85E+00 -9.85E+00 W 1.22E+00 1.35E+00 L 2.21E+00 -8.52E+00
1104 W 3.00E-04 4.17E-01 L 1.78E+00 -9.52E+00 L 5.97E-01 6.35E-01 L 2.42E+00 -7.66E+00
1105 W 6.00E-04 4.29E-01 L 1.74E+00 -9.10E+00 W 3.30E+00 2.01E+00 W 2.50E-03 4.29E-01
1106 W 9.00E-04 4.41E-01 L 1.73E+00 -8.75E+00 W 3.97E+00 2.21E+00 W 3.50E-03 4.22E-01
1107 W 1.20E-03 4.46E-01 L 1.74E+00 -8.47E+00 W 4.62E+00 2.43E+00 W 4.80E-03 4.28E-01
1108 W 1.90E-03 4.65E-01 L 1.74E+00 -8.24E+00 W 5.20E+00 2.51E+00 W 6.10E-03 4.16E-01
1109 W 2.20E-03 4.64E-01 L 1.69E+00 -8.02E+00 W 5.78E+00 2.59E+00 W 7.80E-03 4.18E-01
1110 W 2.80E-03 4.82E-01 L 1.76E+00 -7.85E+00 W 6.32E+00 2.49E+00 L 2.60E+00 -5.87E+00
1111 W 4.10E-03 5.16E-01 W 1.40E-03 6.25E-01 W 7.34E+00 2.63E+00 L 2.65E+00 -5.23E+00
1112 W 7.60E-03 5.61E-01 W 2.20E-03 6.35E-01 W 8.52E+00 2.73E+00 L 2.67E+00 -4.52E+00
1113 W 1.12E-02 6.54E-01 L 1.64E+00 -6.52E+00 W 1.01E+01 2.67E+00 L 2.97E+00 -3.69E+00

(Continued on next page).
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Table 7-6. Continued.

NO, HC Co, co
VSP Bin®
Dist® paral para 2 Dist paral para 2 Dist paral para 2 Dist paral para 2

1114 W 1.25E-02 6.20E-01 L 2.17E+00 -6.35E+00 W 1.14E+01 1.97E+00 L 3.47E+00 -3.24E+00
1201 W 6.36E-05 4.29E-01 L 1.93E+00 -1.06E+01 W 1.76E+00 2.12E+00 L 2.57E+00 -8.03E+00
1202 W 4.28E-05 4.39E-01 L 1.40E+00 -1.12E+01 W 1.51E+00 1.41E+00 L 2.06E+00 -8.94E+00
1203 W 3.10E-05 4.60E-01 L 1.46E+00 -1.11E+01 W 1.60E+00 1.71E+00 L 2.28E+00 -8.73E+00
1204 W 2.00E-04 3.96E-01 L 1.65E+00 -1.04E+01 L 3.64E-01 8.91E-01 L 2.34E+00 -7.93E+00
1205 W 3.00E-04 3.91E-01 L 1.76E+00 -9.81E+00 W 3.92E+00 2.87E+00 L 2.46E+00 -7.42E+00
1206 W 4.00E-04 3.93E-01 L 1.87E+00 -9.39E+00 W 5.20E+00 2.67E+00 L 2.59E+00 -6.52E+00
1207 W 9.00E-04 4.41E-01 L 1.99E+00 -8.86E+00 W 6.29E+00 2.44E+00 L 2.63E+00 -5.82E+00
1208 W 1.90E-03 4.71E-01 L 1.87E+00 -8.41E+00 W 7.40E+00 2.57E+00 L 2.88E+00 -5.57E+00
1209 W 3.00E-03 4.96E-01 L 1.72E+00 -7.89E+00 W 8.48E+00 3.12E+00 L 2.72E+00 -4.98E+00
1210 W 4.10E-03 5.32E-01 L 1.74E+00 -7.55E+00 W 9.75E+00 3.28E+00 L 2.39E+00 -4.42E+00
1211 W 7.20E-03 5.22E-01 L 1.80E+00 -7.04E+00 W 1.29E+01 3.76E+00 L 2.96E+00 -3.93E+00
1212 W 9.20E-03 6.70E-01 L 1.70E+00 -6.13E+00 L 1.62E-01 2.66E+00 W 3.36E-01 4.22E-01

(Continued on next page).
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Table 7-6. Continued.

NO, HC Co, co
VSP Bin®
Dist® paral para 2 Dist paral para 2 Dist paral para 2 Dist paral para 2

1213 L 1.73E+00 -5.55E+00 W 5.40E-03 7.22E-01 W 1.65E+01 9.25E+00 W 4.52E-01 5.23E-01
1214 L 1.74E+00 -5.10E+00 W 6.20E-03 8.86E-01 L 1.27E-01 2.85E+00 W 7.13E-01 6.78E-01
2101 W 5.00E-04 5.20E-01 W 5.00E-04 5.61E-01 W 1.69E+00 1.43E+00 W 4.20E-03 4.77E-01
2102 W 4.00E-04 4.74E-01 W 5.00E-04 5.39E-01 W 1.79E+00 1.57E+00 L 2.31E+00 -6.84E+00
2103 W 2.00E-04 4.90E-01 L 2.00E+00 -8.98E+00 W 1.18E+00 1.27E+00 L 2.17E+00 -7.73E+00
2104 W 7.00E-04 4.53E-01 L 1.85E+00 -8.49E+00 W 2.70E+00 2.13E+00 W 5.70E-03 5.19E-01
2105 W 1.40E-03 5.10E-01 L 1.78E+00 -8.07E+00 W 3.61E+00 2.58E+00 \W 9.10E-03 5.67E-01
2106 W 2.30E-03 5.55E-01 W 1.10E-03 6.28E-01 W 4.41E+00 2.98E+00 W 1.45E-02 6.21E-01
2107 W 3.60E-03 6.26E-01 W 1.60E-03 6.78E-01 W 5.28E+00 3.33E+00 W 2.08E-02 6.70E-01
2108 W 4.90E-03 6.66E-01 W 1.90E-03 7.30E-01 W 5.94E+00 3.44E+00 W 2.68E-02 6.90E-01
2109 W 6.10E-03 6.98E-01 W 2.30E-03 7.31E-01 W 6.58E+00 3.52E+00 L 1.55E+00 -4.09E+00
2110 W 8.00E-03 7.07E-01 W 2.50E-03 7.34E-01 W 7.11E+00 3.45E+00 L 1.55E+00 -3.93E+00
2111 W 1.06E-02 7.26E-01 W 3.20E-03 7.52E-01 W 7.86E+00 3.25E+00 L 1.50E+00 -3.60E+00

(Continued on next page).

142




Table 7-6. Continued.

NO, HC Co, co
VSP Bin®
Dist® paral para 2 Dist paral para 2 Dist paral para 2 Dist paral para 2

2112 W 1.27E-02 7.92E-01 W 3.90E-03 7.54E-01 W 8.48E+00 3.27E+00 L 1.62E+00 -3.09E+00
2113 W 1.38E-02 7.65E-01 W 4.80E-03 7.54E-01 W 9.31E+00 2.92E+00 L 1.91E+00 -2.80E+00
2114 W 1.50E-02 8.02E-01 W 6.20E-03 7.72E-01 W 9.50E+00 2.82E+00 L 2.08E+00 -2.51E+00
2201 W 3.00E-04 4.92E-01 L 1.63E+00 -8.87E+00 W 1.84E+00 2.55E+00 L 2.50E+00 -6.95E+00
2202 W 2.00E-04 4.53E-01 L 1.29E+00 -9.27E+00 W 1.90E+00 2.06E+00 L 2.34E+00 -8.44E+00
2203 W 4.00E-04 5.17E-01 L 1.31E+00 -9.09E+00 W 1.60E+00 1.32E+00 L 2.17E+00 -8.50E+00
2204 W 1.30E-03 4.71E-01 L 1.11E+00 -8.41E+00 L 2.27E-01 1.05E+00 L 2.22E+00 -6.75E+00
2205 W 2.70E-03 4.43E-01 L 1.15E+00 -8.02E+00 L 2.01E-01 1.40E+00 W 9.70E-03 4.81E-01
2206 W 4.70E-03 5.04E-01 L 1.26E+00 -7.65E+00 L 1.89E-01 1.66E+00 W 2.18E-02 4.93E-01
2207 W 7.00E-03 5.71E-01 L 1.44E+00 -7.26E+00 L 1.93E-01 1.85E+00 W 4.28E-02 5.33E-01
2208 W 9.80E-03 5.77E-01 L 1.65E+00 -6.76E+00 L 1.78E-01 2.01E+00 W 9.13E-02 5.58E-01
2209 W 1.13E-02 5.88E-01 W 3.50E-03 6.89E-01 L 1.66E-01 2.16E+00 W 1.21E-01 6.44E-01
2210 W 1.24E-02 5.47E-01 W 3.30E-03 6.38E-01 L 1.66E-01 2.32E+00 L 1.63E+00 -2.73E+00

(Continued on next page).
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Table 7-6. Continued.

NO, HC Co, co
VSP Bin®
Dist® paral para 2 Dist paral para 2 Dist paral para 2 Dist paral para 2
2211 W 2.38E-02 6.49E-01 W 4.90E-03 6.75E-01 L 1.61E-01 2.54E+00 L 1.61E+00 -2.31E+00
2212 W 2.61E-02 6.78E-01 W 8.10E-03 6.72E-01 L 1.09E-01 2.70E+00 W 5.02E-01 5.64E-01
2213 W 4.10E-02 8.95E-01 W 1.50E-02 8.28E-01 L 1.44E-01 2.82E+00 W 1.85E-01 6.76E-01
2214 W 7.12E-02 1.09E+00 W 2.16E-02 6.95E-01 L 1.09E-01 2.94E+00 W 1.77E+00 6.53E-01

First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading <
50,000 miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22:
odometer reading > 50,000 miles and engine displacement > 3.5 liters.
W = Weibull; para 1 of Weibull is scale parameter and para 2 of Weibull is shape parameter; L = lognormal; para 1 of lognormal is ¢
and para 2 of lognormal is &; Parameters were calculated using SAS.
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7.3 Quantification of Uncertainty in Mean Emission Rates

A particular concern in this study is whether a normality approximation can be used to represent
uncertainty in the mean. A normality assumption is convenient becauseit is easy to calculate the
range of uncertainty in the mean in such situations. When a normality assumption is not
applicable, a numerical method, known as bootstrap simulation, was used to quantify uncertainty
inthe mean. Typicaly, the normality assumption is influenced by the sample size, sample mean,
and standard error of mean (SEM). When either sample size n< 40, or when the SEM divided
by the mean was greater than 20, then bootstrap simulation was done to estimate the sampling
distribution of the mean. Overall, in most cases, anormality assumption was applicable. Table
7-7 indicates situations for which a normality assumption was suspected to be inadequate. These
situationsinclude VSP Modes 12 (NOy), 13 (NOy and CO), and 14 (All Pollutants) for odometer
reading < 50,000 miles and engine displacement > 3.5 liters, and Mode 14 (All Pollutants) for
odometer reading > 50,000 miles and engine displacement > 3.5 liters. In each of these cases,
either the sample size isless than 40 or the relative standard error of the mean is greater than 0.2.
Therefore, in these cases, bootstrap simulation was used to quantify uncertainty in the mean.
Uncertainty estimates for al other modes and strata were based upon application of the normality
assumption.

Table 7-7. VSP Modes for Which Uncertainty in the Mean Was Quantified by Bootstrap

Simulation.
Bin® NO HC CO, CO
SEM =0.21,
1212 mean n/a n/a n/a
n=77
EM 532, EM 620,
1213 mean n/a n/a mean
n=>52 n=>52
SEM =0.30, SEM =0.19, SEM =0.020, ﬁ =0.21,
1214 mean mean mean mean
n=39 n=39 n=39 n=239
SEM =0.14, SEM =0.21, ﬂ:0.019, ﬁ:o.la,
2214 mean mean n mean
n=234 n=234 n=234 n=34

2 First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <

3.5 liters; 12: odometer reading < 50,000 miles and engine displacement > 3.5 liters; 21.

odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22: odometer reading >

50,000 miles and engine displacement > 3.5 liters.
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The absolute range of uncertainty in the mean values for each pollutant and V SP-based mode is
givenin Figure 7-9 for NO, and HC and in Figure 7-10 for CO and CO,. Therelative range of
uncertainty in the mean values for each pollutant and V SP-based mode is given in Table 7-8.
Therelative range of uncertainty istypically less than plus or minus 50 percent for most cases.
For CO,, the range of uncertainty islessthan plus or minus 5 percent in nearly al cases. The
relative range of uncertainty is generally smaller for the strata which have larger sample sizes.
For example, for vehicles with engine displacement less than 3.5 liters and odometer reading less
than 50,000 miles, the typical range of uncertainty is less than plus or minus 10 percent for 12 of
14 modes for modal NOy emissions, less than plus or minus 10 percent for 10 of 14 modes for
HC, less than plus or minus three percent for CO, for all modes, and less than plus or minus 20
percent for all modes for CO. However, for vehicles with engine displacement greater than 3.5
liters in the same odometer reading category, the typical range of uncertainty is plus or minus 30
percent for NOy, 40 percent for HC, 7 percent for CO,, and 40 percent for CO. The latter
category has a much smaller sample size than the former.

In the several casesidentified in Table 7-7 for which the normality assumption was suspected to
be inapplicable, it was confirmed based upon the results of bootstrap simulation that the
sampling distributions of the means were not normal. For example, for NO, emissions for Mode
13 for odometer reading < 50,000 miles and engine displacement > 3.5 liters, uncertainty in the
mean was quantified by bootstrap simulation based upon the empirical distribution of data. The
relative 95 percent confidence interval was found to be minus 48 percent to plus 73 percent. The
confidence interval is positively skewed and the wide range of uncertainty in this caseis
attributed to alarge SEM relative to the mean. In Table 7-8, uncertainty estimates based upon
bootstrap simulation are highlighted in bold. For the cases in which uncertainties in the means
were quantified by bootstrap simulation, parametric distributions were fit to the sampling
distributions of the means using the AuvTool software. Asan example, agraphical comparison
isgivenin Figure 7-11 of the empirical distribution of the bootstrap replications of the mean and
afitted parametric distribution is given for NO, emission of Mode 12 based upon an odometer
reading < 50,000 miles and engine displacement > 3.5 liters. A summary of parameters for
parametric distributions fitted to the bootstrap replications of the meansis givenin Table 7-9.

Normal, lognormal, Weibull, beta and gamma distributions were considered as possible fits for
the sampling distributions. The PDFs of the normal, lognormal, and Weibull distributions have
previously been given in Equations (7-1), (7-2), and (7-3), respectively. The PDF of the beta
distribution is:

I PR _T(@)r(B) )
f(x) = B0, B) X*(1-x) B(e, B) = ot ) (7-4)
The PDF of gamma distributioniis:
f(x)=Lle_/lx [(r)=Jyx"eXdx 0<x<oo (7-5)

I°(r)
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Figure 7-9. Quantified Uncertainty in the NOy and HC Mean Emissions (g/sec) of VSP Modes.
First two digit of VSP Bins: 11: odometerreading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading < 50,000
miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22: odometer
reading > 50,000 miles and engine displacement > 3.5 liters.
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Figure 7-10. Quantified Uncertainty in the CO, and CO Mean Emissions (g/sec) of VSP Modes
First two digit of VSP Bins. 11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading < 50,000
miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22: odometer
reading > 50,000 miles and engine displacement > 3.5 liters.)
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Table 7-8. Summary of Mean Values and Relative 95% Confidence Intervals in the Mean for NO,, HC, CO,, and CO Emissions
(g/sec) for VSP Modes for Vehicles of Different Odometer Reading and Engine Displacement.

NO,” HC® co,’ co’
VSP Bin?
mean lower upper mean lower upper mean lower upper mean lower upper
1101 0.000901 -4 4 0.000450 -8 8 1.671078 -1 1 0.007807 -10 10
1102 0.000628 -6 6 0.000257 -7 7 1.457983 -1 1 0.003908 -15 15
1103 0.000346 -5 5 0.000406 -4 4 1.135362 -1 1 0.003347 -8 8
1104 0.001173 -4 4 0.000432 -5 5 2.233264 -1 1 0.008335 -9 9
1105 0.001706 -4 4 0.000530 -5 5 2.919890 -1 1 0.010959 -14 14
1106 0.002368 -4 4 0.000705 -6 6 3.525303 -1 1 0.017013 -16 16
1107 0.003103 -4 4 0.000822 -6 6 4.107483 -1 1 0.020026 -11 11
1108 0.004234 -4 4 0.000976 -7 7 4.635048 -1 1 0.029222 -12 12
1109 0.005069 -5 5 0.001112 -7 7 5.160731 -1 1 0.035531 -13 13
1110 0.005865 -6 6 0.001443 -8 8 5.632545 -1 1 0.055068 -14 14
1111 0.007623 -8 8 0.002061 -11 11 6.534780 -2 2 0.113824 -14 14
1112 0.012149 -10 10 0.003373 -18 18 7.585213 -2 2 0.207586 -16 16
1113 0.015456 -12 12 0.004857 -21 21 9.024217 -3 3 0.441775 -16 16

(Continued on next page)
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Table 7-8. Continued

NO,? HCP coP co®
VSP Bin®
mean lower upper mean lower upper mean lower upper mean lower upper
1114 0.017863 -16 16 0.010948 -24 24 10.088390 -6 6 0.882300 -18 18
1201 0.000290 -19 19 0.000548 -19 19 1.566819 -2 2 0.017699 -21 21
1202 0.000223 -28 28 0.000222 -35 35 1.443564 -2 2 0.008608 -39 39
1203 0.000174 -27 27 0.000272 -27 27 1.470553 -2 2 0.008479 -31 31
1204 0.000719 -12 12 0.000472 -20 20 2.611318 -2 2 0.014548 -22 22
1205 0.001136 -13 13 0.000754 -22 22 3.523681 -2 2 0.025709 -25 25
1206 0.001587 -13 13 0.000702 -19 19 4.650741 -2 2 0.025212 -22 22
1207 0.002370 -13 13 0.000944 -16 16 5.635386 -2 2 0.041130 -22 22
1208 0.004098 -15 15 0.001443 -38 38 6.599677 -3 3 0.076601 -28 28
1209 0.006124 -21 21 0.001708 -24 24 7.647334 -3 3 0.129248 -29 29
1210 0.007313 -22 22 0.002605 -39 39 8.808448 -4 4 0.150578 -35 35
1211 0.013178 -27 27 0.003523 -29 29 11.670609 -4 4 0.355223 -39 39
1212 0.012179 -38 46 0.007653 -34 34 14.520355 -4 4 0.881642 -37 37

(Continued on next page)
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Table 7-8. Continued

NO,? HCP coP co®
VSP Bin®
mean lower upper mean lower upper mean lower upper mean lower upper
1213 0.016506 -48 73 0.006667 -37 37 15.653272 -3 3 1.059857 -25 27
1214 0.027225 -36 49 0.006593 -33 39 17.35699 -7 5 0.934715 -36 44
2101 0.001014 -4 4 0.000901 -5 5 1.543686 -1 1 0.011030 -8 8
2102 0.001042 -7 7 0.000901 -7 7 1.604406 -2 2 0.008723 -13 13
2103 0.000423 -7 7 0.000835 -6 6 1.130833 -1 1 0.004682 -10 10
2104 0.001613 -5 5 0.001027 -6 6 2.386260 -1 1 0.012154 -9 9
2105 0.002638 -4 4 0.001253 -6 6 3.210249 -1 1 0.016731 -10 10
2106 0.003793 -5 5 0.001664 -6 6 3.957732 -1 1 0.023269 -10 10
2107 0.005098 -5 5 0.002089 -6 6 4.752012 -1 1 0.029322 -8 8
2108 0.006373 -5 5 0.002332 -5 5 5.374221 -1 1 0.036942 -9 9
2109 0.007664 -5 5 0.002818 -7 7 5.940051 -1 1 0.049513 -11 11
2110 0.009913 -5 5 0.002985 -6 6 6.427506 -1 1 0.063759 -13 13
2111 0.012685 -6 6 0.003786 -8 8 7.065985 -2 2 0.105380 -15 15

(Continued on next page)
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Table 7-8. Continued

NO,? HCP coP co®
VSP Bin®
mean lower upper mean lower upper mean lower upper mean lower upper
2112 0.014384 -7 7 0.004573 -9 9 7.617703 -2 2 0.247810 -16 16
2113 0.015967 -10 10 0.005700 -12 12 8.322442 -3 3 0.413069 -18 18
2114 0.016717 -10 10 0.007164 -13 13 8.475028 -3 3 0.624663 -19 19
2201 0.000725 -15 15 0.000863 -36 36 1.649427 -2 2 0.020282 -31 31
2202 0.000504 -20 20 0.000300 -32 32 1.762407 -3 3 0.008183 -68 68
2203 0.000661 -14 14 0.000323 -39 39 1.557773 -2 2 0.004830 -87 87
2204 0.002518 -9 9 0.000449 -11 11 2.946419 -1 1 0.012308 -28 28
2205 0.005847 -9 9 0.000818 -34 34 4.127492 -1 1 0.022033 -20 20
2206 0.008361 -11 11 0.001216 -16 16 5.343656 -2 2 0.045073 -20 20
2207 0.010582 -11 11 0.002110 -16 16 6.507179 -2 2 0.077496 -22 22
2208 0.014473 -14 14 0.004394 -28 28 7.602431 -2 2 0.166593 -28 28
2209 0.016372 -15 15 0.004635 -19 19 8.773093 -2 2 0.170018 -24 24
2210 0.019758 -17 17 0.004961 -25 25 10.365910 -2 2 0.263544 -33 33

(Continued on next page)
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Table 7-8. Continued

NO,? HCP coP co®
VSP Bin®
mean lower upper mean lower upper mean lower upper mean lower upper
2211 0.030507 -20 20 0.006631 -30 30 12.849389 -3 3 0.338962 -39 39
2212 0.034219 -32 32 0.010900 -36 36 15.030303 -3 3 0.824829 -36 36
2213 0.043387 -31 31 0.016573 -30 30 16.861726 -4 4 1.444311 -27 27
2214 0.068743 -27 27 0.027174 -35 36 18.92916 -13 10 2.420786 -27 28

First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading <

50,000 miles and engine displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22:

odometer reading > 50,000 miles and engine displacement > 3.5 liters.

® Unit of mean: g/sec; Unit of lower and upper bound: %.
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Figure 7-11. Empirical Distribution of Bootstrap Replications of Mean Values and Fitted Beta
Distribution for Uncertainty in the Mean for NO, Emissions (g/sec) of Mode 12, Odometer
Reading < 50,000 miles, Engine Displacement > 3.5 Liters.

Table 7-9. Parameters of Parametric Probability Distribution Fit to the Bootstrap Replications of

the Means for Selected Modes, Strata, and Pollutants, Based upon Empirical Bootstrap

Simulation
Engine :

vSP | Odometer displ soement | Pollutant | Disribution? | First | Second
Bin | reading (miles) (liters) Para. Para
12 < 50,000 > 35 NO Beta 22.275 | 1761.856
13 < 50,000 >35 NOy Beta 3.431 96.093
13 < 50,000 > 35 CO Gamma 25.328 0.029
14 < 50,000 >35 NOy Beta 10.482 | 511.286
14 < 50,000 >35 HC Beta 25413 | 3911.552
14 < 50,000 > 35 CO, Weibull 17.169 39.735
14 < 50,000 >35 CO Normal 0.895 0.191
14 > 50,000 > 35 NO Beta 42.992 | 595.202
14 > 50,000 >35 HC Beta 21.873 805.28
14 > 50,000 > 35 CO, Weibull 18.658 33.446
14 > 50,000 >35 CO Gamma 36.591 0.058

% Beta: first parameter is o, second parameter is B; gamma: first parameter is y, second parameter
is A; Weibull: first parameter is k, second parameter is c; Normal: first parameter is p, second
parameter is G.
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The parametric distributions fit to the bootstrap replications of the means generally offered an
excellent fit. The use of parametric distributions to describe uncertainty in the mean offers the
key advantage of compactness and eliminates the requirement to save the bootstrap replications
of the mean. There was one case shown in Table 7-9 for which anormal distribution was found
to provide the best fit. However, for the other 10 cases shown, beta, gamma, or Weibull
distributions offered the best fit and captured the skewness in the sampling distributions of the
mean.

7.4 Uncertainty Correction Factor for Averaging Time

Uncertainty in the mean emission rate based upon a 1-second time period was quantified for each
bin. However, the range of uncertainty varies depending upon the averaging time of the data.
The objective of this section is to demonstrate how the range of uncertainty varies with

averaging time and to demonstrate an approach for adjusting estimates of uncertainty in the mean
emission rates for a one second averaging time to other averaging times.

Uncertainty in the mean is related to the Standard Error of Mean (SEM). Therefore, itis
convenient to develop a correction factor to adjust the SEM for different averaging times. To
evaluate the relative change of the SEM, a correction factor for at-second time period was
defined as Equation (7-6):

CF, = e (7-6)
SEM,
where: CFi«: correction factor for t-second time period, no unit
FEM.«c: Standard error of mean for t-second time period, g/sec
FEMi.«c: Standard error of mean for 1-second time period, g/sec

Using arelative correction factor enables a straight-forward adjustment of the uncertainty range
for different time periods. For example, if the absolute 95 percent confidence interval of mean
for a 1-second period is minus 0.1 gram/sec to plus 0.1 gram/sec, then the absol ute 95 percent
confidence interval of mean for 5-second period can be calculated as minus 0.1CFs.s gram/sec
to plus 0.1CF5 & gram/sec. If the correction factor has avalue of 2, then the uncertainty in the
mean for the 5-second averaging time would be from minus 0.2 g/sec to plus 0.2 g/sec in this
example.,

In Figures 7-12 to 7-15, for each of four vehicle strata (combinations of odometer reading
reading and engine displacement categories), respectively, the relative standard error of the mean
(or correction factor defined in Equation 7-6) is plotted with respect to averaging time. The data
for this analysis was obtained from the data set used to evaluate 10-second consecutive averages
asabasisfor model development. For each 10-second averaging time, there are two five-second
averages and ten 1-second averages that can be compared in order to evaluate the range of
uncertainty for each of these three averaging times. Each graph in each figure displays the
standard error of the mean for the five-second averaging time divided by that for the 1-second
averaging time, for each of 14 VSP modes. Similar data are shown for the 10-second averaging
time. A ssimplified correction factor was estimated by fitting a polynomial regression through the
datain the graphs. Although the analysis could be extended to averaging times longer than 10
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Figure 7-12. Estimation of Correction Factors for the Relative Standard Error of the Mean (SEM/Mean) Versus Averaging Times of
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seconds, as the averaging time increases, the sample size decreases. Therefore, for
demonstration purposes, the largest averaging time considered was ten seconds. As an example,
Figure 7-11 shows that the correction factor increases as the averaging time increases. However,
the marginal change becomes smaller as the averaging time increases. We hypothesize that the
correction factor may reach a plateau or a maximum at some averaging time larger than 10-
seconds; however, we also hypothesize that such a plateau or maximum may not be much larger
than the correction factor estimated at 10-seconds. Therefore, as aninitial estimate pending
further analysisin future studies, we suggest that the correction factor applied to averaging times
greater than 10-seconds be the same as that for 10 seconds.

Of the 16 graphs shown in Figures 7-12 through 7-15, 14 of them display the same general
characteristic of areduction in the marginal increase in the correction factor as the averaging
time increases. For only two cases, which are both for CO, emissions for odometer reading and
engine displacement strata for which the sample sizeisrelatively small, the correction factor
appearsto reach a peak at approximately 8 seconds averaging time and decreases from 8 seconds
to 10 seconds averaging times. Thus, for these two case, shown in Figures 7-13 and 7-15, the
correction factor for the 10 second averaging timeis not substantially different from the
correction factor for the 5 second averaging time. Although it is possible that the correction
factor for these two cases might decrease as averaging time increases beyond 10 seconds, as a
conservative assumption the value of the correction factor at 10 seconds is suggested for use for
averaging times longer than 10 seconds. For CO as shown in Figure 7-13, there appears to be
some data that may represent outliers, leading to an estimate of the correction factor for an
individual mode as large as approximately 9.0 for the 10 second averaging time. This potential
outlier may be because of a small sample size for that particular mode.

Table 7-10 summarizes the polynomial regression models fit to the data shown in Figures 7-12
through 7-15. Also shown in the table isthe value of the correction factor at the 10 second
averaging time for each pollutant and each odometer reading and engine displacement strata.
These values are recommended for use for averaging times greater than 10 seconds. For NO,
the correction factors for 10 seconds or greater averaging time range from 2.14 to 2.54 among
the four strata. The corresponding ranges for HC, CO,, and CO are 2.50 to 2.70, 1.99 to 2.43,
and 2.35t0 2.90. Thus, atypical value of these correction factors at 10 seconds or greater
averaging timeis approximately 2.5, implying that the range of uncertainty for averaging times
of 10 seconds or more is afactor of approximately 2.5 greater than that at 1 second. This
differenceis substantial and illustrates the importance of properly accounting for averaging time
when performing uncertainty analysis.

Asobserved in Figures 7-12 through 7-15, there is variability in the value of the correction factor
at the 10 second averaging time when comparing results for each of the 14 modes. It was
hypothesized that perhaps a portion of the inter-mode variability in the correction factor for a
given averaging time could be explained based upon VSP. Therefore, the values of the
correction factors at 10 seconds were normalized with respect to the average correction factor at
10 seconds (as shown in the last four columns of Table 7-10), and the normalized correction
factors, which are described here as “ bin adjustment factors,” were plotted versus mode as shown
in Figures 7-16 through 7-19 for four different odometer reading and engine displacement strata.
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Table 7-10. Averaging Time Correction Factors for Uncertainty in VSP Binsfor NO,, HC, CO,, and CO Emissions (g/sec) for Four
Strata With Respect to Odometer Reading and Engine Displacement.

< 10 seconds’ > 10 seconds
Strata®
NO HC CO;, co NO( | HC | co; | CcO
11 y = -0.0154x? + 0.3326x + 0.6829 y = -0.0167x> + 0.3638x + 0.653 y = -0.0186x? + 0.3608x + 0.6578 y =-0.0158x? + 0.3441x + 0.6717 | 247 | 262 | 2.40 | 253
12 y = -0.0152x% + 0.2935x + 0.7217 y = -0.0181x* + 0.3654x + 0.6527 y = -0.0246x% + 0.3802x + 0.6443 y =-0.0167x*+ 0.3948x + 0.6219 | 214 | 250 | 1.99 | 2.90
21 y = -0.0163x? + 0.3479x + 0.6684 y =-0.0157x% + 0.3607x + 0.6549 y = -0.019x? + 0.3682x + 0.6508 y = -0.017x? + 0.3371x + 0.6799 252 | 270 | 243 | 235
22 y = -0.017x? + 0.3496x + 0.6674 y = -0.0168x* + 0.3687x + 0.6481 y = -0.0266x* + 0.398x + 0.6286 y =-0.0191x% + 0.3619x + 0.6572 | 2.46 | 2.65 | 1.95 | 2.37

#11: odometer reading < 50,000 miles and engine displacement < 3.5 liters; 12: odometer reading < 50,000 miles and engine

displacement > 3.5 liters; 21: odometer reading > 50,000 miles and engine displacement < 3.5 liters; 22: odometer reading > 50,000
miles and engine displacement > 3.5 liters.
Py correction factor (no unit), x, time (second)
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Figure 7-16. Bin Adjustment Factors for the Uncertainty Correction Factor at “= 10 seconds’ of NOy, HC, CO,, and CO for
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Figure 7-17. Bin Adjustment Factors for the Uncertainty Correction Factor at “= 10 seconds’ of NOy, HC, CO,, and CO for
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Figure 7-18. Bin Adjustment Factors for the Uncertainty Correction Factor at “= 10 seconds’ of NOy, HC, CO,, and CO for
Odometer Reading > 50,000 miles and Engine Displacement < 3.5 Liters.
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Figure 7-19. Bin Adjustment Factors for the Uncertainty Correction Factor at “= 10 seconds’ of NOy, HC, CO,, and CO for
Odometer Reading >50,000 miles and Engine Displacement > 3.5 Liters.
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The bin adjustment factor (BAF) for agiven bin is given by:

CFlO—sec, k
ACF

10-sec

BAF, = (7-7)
Where:

BAFy, Bin Adjustment Factor for Bin k at 10 second;

CF10-seck, Correction Factor for Bint at 10 second,;

ACF10.sc, Average Correction Factor for Bin 1 to Bin 14 at 10 second.

The data shown in Figures 7-16 through 7-19 indicate that typically the bin correction factor is
smaller for the larger V SP modes than for the lower V SP modes, athough there are exceptions.
For example, for NOy emissions for higher mileage vehicles, it appears that the bin correction
factor increases as VSP increases. For 13 of the 16 graphs shown in the four figures, the typical
range of variation of the bin adjustment factor is approximately plus or minus five percent or
less. For vehicles with larger engine displacement, there are three cases in which the range of
variation of the bin adjustment factor is approximately plus or minus 20 percent or more,
including HC and CO, emissions for vehicles with odometer reading less than 50,000 miles and
CO; for vehicles with odometer reading greater than 50,000 miles. It is possible that this
apparent difference for the larger engine vehicles compared to the smaller engine vehicles
represents areal difference or possibly it could be an artifact of having smaller sample sizes for
the larger engine vehicles. In general, while the linear curve fits capture the overall trends of the
data among the 14 modes, it is clear that the variation of the bin adjustment factor with respect to
VSP modeisnot truly linear in al cases. Infuture work, it may be worth exploring other curve
fitsto these data and/or exploring the use of other explanatory variables, such as the mid point
value of VSP for each mode instead of the mode number, in order to improve the estimation of
the bin adjustment factor.

A summary of the Bin Adjustment Factors devel oped based upon the data and curve fits shown
in Figures 7-16 through 7-19 isgivenin Table 7-11.

7.5  Estimation of Uncertainty in Model Results

In this section, two methods are evaluated and compared for estimating uncertainty in the total
emissionsfor atrip or driving cycle. These methods include the numerical method of Monte
Carlo simulation and an analytical method based upon alinear model and normality assumptions
for uncertainty in individual modes. These two methods areillustrated for a case study example
of predicting uncertainty in total trip emissions for the IM240 driving cycle. Thiscase study is
followed by case studies for uncertainty in total emissions for severa different driving cycles and
then by a case study for multiple vehicles on a selected driving cycle.

7.5.1 Estimation of Uncertainty in Total Emissions Based Upon the M 240 Driving
Cycle: Comparison of Monte Carlo Simulation and Analytical Approaches

This example demonstrates the prediction of total emissions from IM240 cycle. The prediction
was based upon quantified uncertainty in VSP modes in which the uncertainty was adjusted for
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Table 7-11. Bin Adjustment Factors for Correction Factor of Time Adjustment at “= 10 seconds’
for NO,, HC, CO,, and CO and for Four Odometer Reading and Engine Displacement

Strata.
Odometer | Engine NO,2 HC? CO® co?
reading displacement
(mile) (liters)
< 50,000 <35 y=- y=- y=- y=-
0.0084x + 0.0121x + 0.0074x + 0.0169x +
1.0634 1.0907 1.0553 1.127
< 50,000 >35 y=-0.001x |y=- y =-0.04x + | y =-0.033x
+ 1.0078 0.0394x + 1.3001 +1.1125
1.2954
> 50,000 <35 y=0.0073x |y=- y=- y = 0.003x
+0.9453 0.0062x + 0.0006x + +0.9775
1.0467 1.0047
> 50,000 >35 y=0.0074x |y=- y=- y=-
+0.9448 0.0099x + 0.0425x + 0.0129x +
1.0742 1.3186 1.097

&y: bin adjustment factor (no unit); X, bin number (from 1 to 14)

averaging time using the correction factors for averaging time adjustment. The standard IM240
cycle contains 240 seconds. The temporal allocation of the IM240 cycleinto VSP modesis
givenin Table 7-12. Most of the time spend in the IM240 cycleis represented by VSP modes 1
through 8. Only 10 seconds are spent in Modes 9 through 11, combined, and no timeis spent in
the highest VSP modes 12, 13, or 14.

Table 7-12. Allocation of the Standard 1M 240 Driving Cycle Into VSP Modes With Respect to
Time Spent in Each Mode.

V SP Mode Number Total Seconds
1 41
2 24
3 16
4 37
5 47
6 19
7 29
8 17
9 4
10 3
11 3
12 None
13 None
14 None
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Thus, total emissions from IM240 cycle are calculated based upon a sum of emission from each
bin, based upon summing the products of the time spent in each mode multiplied by the
respective mode average emission rate:

47xEFmoddS + 19x EFmode(i + 29X EI:mode7 + 17X EFmodeB +
4x EI:modeg + 3% EFmodelO + 3% EI:modell (7'8)

where:
TE: total emissions, g
EF: 1-second based emission factor for each V SP mode (g/sec)

Asan illustrative example, uncertainty in total NOy emissions from the IM 240 cycle for avehicle
with odometer reading < 50,000 miles and engine displacement < 3.5 liters was predicted. For
Modes 1 through 11 applied to the IM240 cycle for this particular pollutant and vehicle strata,
the quantified uncertainty in the 1-second average modal emissions can reasonably be based
upon a normality assumption. To estimate uncertainty in total emissions, the quantified
uncertainty in the 1-second average emissions of each mode was adjusted based upon the total
amount of time spent in the mode using the averaging time correction factor previously
described. The input assumptions for prediction of uncertainty in total emissions are givenin
Table 7-13. These assumptions include the probability distribution assumed for uncertainty in
the mean for each mode, the mean modal emission rate, the standard deviation of the distribution
for uncertainty in the mean (i.e. the standard error of the mean), the numerical value of the
correction factor applied, and the numerical value of the bin adjustment factor applied. For
Modes 1 through 8, 10 or more seconds were spent in each mode. Therefore, the correction
factor applicable to 10 or more secondsis used for these modes. For Modes 9, 10 and 11, less
than 10 seconds were spent in each mode. Therefore, the correction factor was estimated from
the polynomial curvefits presented in Table 7-10. For casesin which the averaging time was
less than 10 seconds, a bin adjustment factor was not applied. The correction factor and bin
adjustment factor were multiplied with the standard deviation of the modal emission rate to
arrive at anew standard deviation for the modal emission rate appropriate for the particular
averaging time of each mode. For example, for Mode 1, the corrected standard deviation was
(1.97x107 g/sec) x (2.47) x (1.0248) = 4.99x10™ g/sec.

Monte Carlo simulation was used to propagate uncertainty in each modal emission rate, using
Equation (7-8), in order to estimate uncertainty in total emissions. For the Monte Carlo
simulation, a sample size of 10,000 was selected. When performing Monte Carlo simulation, the
selection of sample sizeistypically based upon a compromise between the precision of the
estimated uncertainty for the model output versus the computational burden. A sample size of
10,000 is not necessary in every case. Smaller sample sizes may provide adequate results.
Moreover, other methods aside from Monte Carlo simulation, such as Latin Hypercube
Sampling, can be used to obtain precise estimates of the distribution of a model output using
smaller sample sizes than required for Monte Carlo ssmulation. Cullen and Frey (1999) and
Morgan and Henrion (1990) provide more discussion on criteria and methods for selecting
sample sizes for Monte Carlo simulation and for Latin Hypercube Sampling. The results from
Monte Carlo simulation are shown in Table 7-14 and in Figure 7-20.
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Table 7-13. Input Assumptions for Prediction of Uncertainty in Total NO, Emissions for a Cast
Study of the IM240 cycle, for Vehicles with Odometer Reading < 50,000 Miles and
Engine Displacement < 3.5 Liters.

\ NO, Emission Factor |
Mode Input M ean Modal | Standard Deviation of Correction _ Bin
Number | Distribution Emission Rate . Mean Modal Factor Adjustment
(g/sec) Emission Rate (g/sec) Factor
1 Normal 0.000901 1.97E-05 2.47 1.025
2 Normal 0.000628 2.04E-05 2.47 1.03
3 Normal 0.000346 9.26E-06 2.47 1.033
4 Normal 0.001173 2.46E-05 2.47 1.033
5 Normal 0.001706 3.56E-05 2.47 1.031
6 Normal 0.002368 5.12E-05 2.47 1.027
7 Normal 0.003103 6.86E-05 2.47 1.02
8 Normal 0.004234 9.44E-05 2.47 1.011
9 Normal 0.005069 0.000141 1.77 None®
10 Normal 0.005865 0.00017 1.54 None®
11 Normal 0.007623 0.000301 1.54 None®

no Bin Adjustment Factor is needed because time period is smaller than 10 seconds.

Table 7-14. Example Prediction of Uncertainty in Total Emissions for NO, Emissions From the
IM240 Cyclefor Vehicles with Odometer Reading < 50,000 Miles and Engine
Displacement < 3.5 Liters Based upon Monte Carlo Simulation

Cycle IM240
Vehicle Odometer reading < 50,000 miles, engine displacement < 3.5 liters
Pollutant NOy
mean® " 0.45¢g
, | Lower -0.02 9
Absolute 95% CI?
Upper 0.02¢
_ Lower -4.4%
Relative 95% CI*°©
Upper 4.4%
2 based upon Monte Carlo Simulation results of 10,000 runs
P unit: gram

€ unit: %
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Figure 7-20. Quantified Uncertainty in Total NO, Emissions from the IM240 Cycle for Vehicles
with Odometer Reading < 50,000 Miles and Engine Displacement < 3.5 Liters Based upon
Monte Carlo Simulation.

The results from the Monte Carlo simulation are a total NO, emissions mean estimate of 0.45
grams with a 95 percent range of uncertainty of plus or minus 0.02 grams, or plus or minus 4.4
percent of the mean. In this particular case, even with the correction factor for averaging time
adjustment and the bin adjustment factor applied to each mode, the range of uncertainty in the
estimated average total emissions was sufficiently narrow that a normality assumption would be
justifiable.

As an alternative to Monte Carlo simulation, an analytical solution was developed. For alinear
model and for an assumption of normality for uncertainty in each modal emission rate, the
uncertainty in the total emissions can be estimated as follows:

U e =1/i(Ui ><\Ni)2 (7-9)
Where: |

Uiota:  Uncertainty in the sum of the quantities (i.e. half the 95% CI)
Ui: Uncertainties associated with each quantity, (i.e. half the 95% CI)
W:  Weight associated with each quantity

The weight is the fraction of total time spent in each mode. The analytical solution for the
IM240 cycleisthat the average total emissions are 0.45 grams and the uncertainty is
approximate minus or plus 0.018 grams for a 95% confidence interval, corresponding arelative
range of minus or plus 4 percent, which is similar to numerical simulation results.

The analytical method offers the advantage of reduced computing resources required to estimate
total uncertainty in emissions, when compared to the Monte Carlo simulation approach.
However, the analytical method is limited to situations in which there are a linear combination of
normal distributions. Therefore, if in the future there was a need to include uncertainty in not
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Table 7-15. Allocation of the ART-EF, IM240, FTP (Bags 2 and 3) and US06 Driving Cycles
Into VSP Modes With Respect to Time Spent in Each Mode.

Seconds Spent in Each Mode by Driving Cycle
V'SP Mode ART-EF IM240 FTP US06

1 85 41 201 113
2 51 24 119 19
3 196 16 336 69
4 66 37 294 26
5 40 47 212 40
6 31 19 105 55
7 18 29 60 64
8 10 17 27 61
9 5 4 8 45
10 2 3 5 56
11 3 3 32
12 9

13 21
14 11

only the modal emission rate but also in the fraction of time spent it each mode, the analytical
method presented here would not be applicable. Cullen and Frey (1999) provide an overview of
approximate analytical methods for propagating the standard deviation of distributions for model
inputs through amodel in order to estimate the standard deviation of the model outpui.

7.5.2 Estimation of Uncertainty in Total Emissions of Selected Driving Cycles

In this section, uncertainty estimates are developed for total emissions of NOy, HC, CO,, and CO
for four selected driving cycles, including ART-EF, IM240, FTP, and US06. These four cycles
represent different ranges of VSP and of total emissions. The uncertainty in total emissions was
guantified using the analytical method explained in the previous section. The distribution of the
total time of each cycle by VSP modeisgivenin Table 7-15. For the ART-EF cycle, over 90
percent of the total cycle timeis spent in Modes 1 through 6, and there is no representation of
Modes 11 through 14. As previously discussed, for the IM240 cycle most of the activity occurs
in Modes 1 through 8. The FTPissimilar to the IM240 cycle in that most of the timeis spent in
Modes 1 through 8. The US06 cycle is more widely distributed over the 14 modes compared to
the other three cycles.

The results of the uncertainty analysis for the IM240, ART-EF, FTP, and US06 cycles are shown
in Tables 7-16 through 7-19, respectively. Each table shows results for the mean total emissions,
absolute uncertainty, and relative uncertainty for NOy, HC, CO,, and CO and for four strata
based upon odometer reading and engine displacement.
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Table 7-16. Absolute and Relative Uncertainty Estimates for Mean Total Emissions of NO,, HC, CO,, and CO for Four Odometer

Reading and Engine Displacement Tier 1 Vehicle Stratafor the IM240 Cycle.

Odometer Engine NOy HC CO, CO
reading displacement | Total | Abs. | Re. | Totd Abs. Rel. | Tota | Abs. | Rel. | Tota | Abs. | Rd.
(mile) (liters) Emis? | Lmt” | Lmt° | Emis? | Lmt? | Lmt | Emis® | Lmt” | Lmt.° | Emis® | Lmt? | Lmt°
< 50,000 <35 045 | 0.018 | 4.0 0.14 | 0.0079 | 5.6 660 53 | 0.79 3.3 0.35 11
< 50,000 > 3.5 035 | 0042 | 12 024 | 0.061 25 841 14 1.6 7.9 1.9 24
> 50,000 <35 068 | 0.030 | 4.3 033 | 0018 | 55 728 6.8 | 0.93 4.6 035 | 7.7
> 50,000 > 3.5 1.3 0.15 11 0.32 | 0.083 26 962 12 1.3 11 2.7 25

% total emissions, grams

b absolute upper and lower limits, grams

“ relative upper and lower limits, %

Table 7-17. Absolute and Relative Uncertainty Estimates for Mean Total Emissions of NO,, HC, CO,, and CO for Four Odometer
lacement Tier 1 Vehicle Stratafor the ART-EF Cycle.

Reading and Engine Dig

Odometer Engine NOy HC CO, CO
reading displacement | Total | Abs. | Rel. | Total | Abs. | Rel. | Tota | Abs. | Rel. | Tota | Abs. | Rel.
(mile) (liters) Emis? | Lmt? | Lmt.c | Emis® | Lmt? | LmtS | Emis? | Lmt.? | LmtS | Emis® | Lmt® | Lmt.C
< 50,000 <35 053 | 0.021| 3.9 024 | 0.015| 6.3 969 8.2 0.85 4.0 0.41 10
< 50,000 >35 0.34 | 0.040 12 0.18 | 0.040 23 1176 19 1.7 8.8 2.3 26
> 50,000 <35 0.77 | 0.032 | 4.2 054 | 0.037 | 6.9 1025 11 1.0 58 0.44 1.7
> 50,000 >35 1.3 0.13 0.8 0.37 0.12 31 1318 21 1.6 11 3.1 30

%total emissions, grams

b absolute upper and lower limits, grams

“ relative upper and lower limits, %
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Table 7-18. Absolute and Relative Uncertainty Estimates for Mean Total Emissions of NO,, HC, CO,, and CO for Four Odometer
Reading and Engine Displacement Tier 1 Vehicle Stratafor the FTP (Bags 2 and 3) Cycle.

Odometer Engine NOy HC CO, CO
reading displacement | Total | Abs. | Rel. | Tota | Abs. | Rel. | Tota | Abs. | Rel. | Total | Abs. | Rd.
(mile) (liters) Emis? | Lmt” | Lmt® | Emis? | Lmt” | Lmt° | Emis® | Lmt” | Lmt.° | Emis® | Lmt.” | Lmt°
< 50,000 <35 17 | 0.069 | 4.0 0.67 | 0.038 | 5.7 2997 25 0.84 13 14 11
< 50,000 > 35 1.1 0.13 11 0.73 | 0.17 23 3640 55 15 27 6.5 24
> 50,000 <35 2.5 011 | 43 15 |0.097 | 6.2 3209 33 1.0 18 1.5 8.0
> 50,000 > 35 4.6 046 | 9.9 1.1 0.30 27 4123 56 14 33 7.8 24

% total emissions, grams

b absolute upper and lower limits, grams

“ relative upper and lower limits, %

Table 7-19. Absolute and Relative Uncertainty Estimates for Mean Total Emissions of NO,, HC, CO,, and CO for Four Odometer

Reading and Engine Displacement Tier 1 Vehicle Stratafor the US06 Cycle.

Odometer Engine NOx HC CO; CO
reading displacement | Total | Abs. | Rel. | Tota | Abs. | Rel. | Tota | Abs. | Rel. | Total | Abs. | Rd.
(mile) (liters) Emis® | Lmt” | Lmt® | Emis® | Lmt° | Lmt.° | Emis? | Lmt” | Lmt.° | Emis? | Lmt” | Lmt.°
< 50,000 <35 2.3 0.15 6.5 0.72 | 0.094 13 2334 27 1.2 35 5.6 16
< 50,000 >35 2.4 0.63 27 0.93 0.22 24 3395 60 18 72 20 28
> 50,000 <35 3.2 0.16 51 1.3 0.076 | 59 2512 26 1.0 35 53 15
> 50,000 >3.5 7.3 13 17 2.1 0.%4 26 3827 51 13 117 30 26

®total emissions, grams

b absolute upper and lower limits, grams

“ relative upper and lower limits, %
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The relative range of uncertainty, on a percentage basis in comparison to the mean total
emissions, is similar for the four cycles for a given pollutant and stratain most cases. For
example, for vehicles with odometer reading less than 50,000 miles and engine displacement less
than 3.5 liters, the relative uncertainty range is approximately 4 to 7 percent for NOy, 6 to 13
percent for HC, one percent for CO, and 10 to 16 percent for CO when comparing all four
driving cycles. Within these ranges, the US06 cycle tends to have larger relative uncertainty
compared to the other three cycles. For example, for the same vehicle strata, the uncertainty in
NOy emissions for the US06 cycle is plus or minus 7 percent compared to only plus or minus 4
percent for the IM240, ART-EF, and FTP cycles. The uncertainty estimates for the US06 cycle
are larger than for the other three cycles for NOx for all strataand for CO for strata 11 (<50,000
miles, < 3.5 liters) and 21 (>50,000 miles, <3.5 liters).

Setting aside the differences between the US06 and the other cycles, the typical ranges of
uncertainty also vary by strata, with smaller ranges of uncertainty for those strata for which there
are more data. These include the strata for engine displacement less than 3.5 liters for both
odometer reading ranges. For these two strata, atypical range of uncertainty is plus or minus 4
percent for NOy, plus or minus 6 percent for HC, plus or minus 1 percent for CO,, and plus or
minus 10 percent for CO. For the larger engine displacement strata for both odometer reading
ranges, the typical ranges of uncertainty are plus or minus 10 percent for NOy, plus or minus 25
percent for HC, plus or minus 2 percent for CO,, and plus or minus 25 percent for CO. The
uncertainty ranges are typically narrowest for CO..

The relative uncertainty ranges in NOy emissions are typically larger than that for CO, but less
than that for HC and CO. Therelative uncertainty ranges for HC and CO are comparable to each
other in most cases. Thus, the key insights are that: (1) the amount of uncertainty appears to
increase as the average V SP or range of V SP of a cycle increases; (2) the amount of uncertainty
isafunction of sample size; and (3) the relative amount of uncertainty is smallest for CO,,
largest for both HC and CO, and in between for NOy. Furthermore, the relative range of
uncertainty for these particular cyclesis as small as only one or two percent for CO, and as large
as 30 percent or more for HC and CO. Thus, in some cases, the range of uncertainty in total
emissionsis substantial.

The uncertainty estimates presented in this section represent uncertainty in total emissionsfor a
single vehicle of a given odometer reading and engine displacement. In order to estimate
uncertainty in total emissions for afleet of vehicles, these estimates can be multiplied by the tota
number of vehicles operated on each activity pattern for each strata. For example, suppose that
100 vehicles of odometer reading less than 50,000 miles and engine displacement less than 3.5
liters were operated on an activity pattern similar to the US06 cycle. The total emissions and the
relative range of uncertainty would be 230 g + 6.5% for NOy, 72 g = 13% for HC, 233,400 g
+1.2% for CO,, and 3,500 g £ 16% for CO. Suppose in addition that there were 100 vehiclesin
each of the other three odometer reading and engine displacement strata. In this case, the results
would be be 1,520 g + 9.6% for NO, 505 g + 12% for HC, 1,207,000 g +0.7% for CO,, and
25,900 g = 14% for CO. Of course, the method for estimating uncertainty in total emissions can
be expanded to account for the sum of total emissions and uncertainty in total emissions when
different vehicles are operating on different activity patterns.
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7.5.3 Estimation of Uncertainty in Total Emissionsfor Different Numbers of
Vehicles

The purpose of this section isto illustrate that the relative range of uncertainty in total emissions
for aparticular activity pattern is not a function of the number of vehicles operating on that
pattern for agiven strata. As a case study, the mean total emissions and the uncertainty in the
mean total emissions was estimated for 13 vehicles operating on the ART-EF cycle. In this case
study, the inter-vehicle variability in the speed traces for each test is taken into account. The
allocation of the second-by-second emission data from the driving cycle testsinto VSP modesis
summarized in Table 7-20. Although on average the distribution of modes among the 13
vehiclesis similar to the distribution of modes for the standard ART-EF cycle as shown in Table
Table 7-15, there is variability in the amount of time spent in each mode from one test to another.
For example, for 12 of the tests the amount of time spent in Mode 3 varied from 191 secondsto
211 seconds, while for another test the amount of time spent in this mode was 253 seconds. For
comparison, the standard ART-EF speed trace has 196 secondsin Mode 3. Thus, it isthe case
that individual tests do not exactly reproduce the standard speed trace.

As an example, the uncertainty in total NOx emissions were quantified for the 13 vehicles taking
into account inter-vehicle variability in the speed traces and uncertainty in the emission rate for
each individual mode. The average estimate of mean total NO, emission from the 13 vehicles,
based upon Monte Carlo simulation with 10,000 replications, is 7.11 grams. The quantified
absolute 95% confidence interval isfrom 6.84 gram to 7.38 gram, corresponding to arelative
range of minus 3.8 percent to plus 3.8 percent. The CDF of the quantified uncertainty in the
mean total emissionsis shown in Figure 7-21.

The relative range of uncertainty of plus or minus 3.8 percent is influenced in part by the
variability in the distribution of the modes among the 13 vehicles because of the variability in the
speed traces for each test. From the previous section, the uncertainty estimated based upon the
standard speed trace for the same strata of vehicles was plus or minus 3.9 percent. The
difference in the relative range of uncertainty of 0.1 percent is most likely attributable to the role
of inter-vehicle variability in the speed traces. Therefore, these results illustrate that the relative
range of uncertainty in mean total emissionsisrelatively insensitive to the number of vehicles
tested or for which predictions are being made, even though there may be some inter-vehicle
variability in the speed traces.

7.6  Summary and Recommendations

This chapter has demonstrated several key issues pertaining to quantification of variability and
uncertainty in vehicle emissions estimates. With regard to characterization of variability, the key
points addressed in this work include the following:

e Single component distributions are often useful and reasonably accurate for estimating
inter-vehicle variability in emissions for most modes and vehicle strata, but they do not
work well for all modes and vehicle strata;

e Single component distributions whose parameters are estimated using Maximum
Likelihoood Estimation (MLE) can have means and standard deviations that are
substantialy different from that of the data;
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Table 7-20. Allocation of the Actual ART-EF Driving Cycle Speed Traces Into VSP Modes
With Respect to Time Spent in Each Mode for 13 Different Vehicles

VSP VehicleID

bin® | #7 | #10 | #11 | #15 | #18 | #21 | #22 | #26 | #27 | #39 | #42 | #48 | #50
1101 | 74 | 64 | 74 | 75 | 68 | 71 | 73 | 71 | 67 | 54 | 72 | 713 | 61
1102 | 54 | 67 | 55 | 45 | 51 | 53 | 59 | 57 | 62 | 50 | 56 | 56 | 69
1103 | 206 | 198 | 200 | 202 | 211 | 206 | 202 | 200 | 202 | 253 | 202 | 199 | 191
1104 42 | 66 | 51 | 62 | 56 | 52 | 50 | 56 | 60 | 55 | 56 | 54 | 99
1105 43 | 33 | 41 | 50 | 38 | 47 | 34 | 45 | 36 | 40 | 42 | 39 | 47
1106 | 42 | 35 | 38 | 31 | 36 | 34 | 42 | 29 | 32 | 24 | 38 | 40 | 16
1107 19 | 17 | 20 | 16 | 18 | 19 | 24 | 19 | 22 4 15 | 22 | 10
1108| 8 | 10 | 12 8 10 8 7 12 9 11 9 8 5
1109 | 8 6 7 7 9 5 7 8 6 2 6 4 2
1110 | 6 4 3 6 5 7 4 5 4 2 6 6 2
1111 2 1 2 4 1

1112 2

1113 2

1114

First two digit of VSP Bins: 11: odometer reading < 50,000 miles and engine displacement <

3.5 liters

Figure 7-21. Quantification of Uncertainty Based upon Monte Carlo Simulation for Total NO
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The mean and standard deviations of fitted distribution can be forced to match those of
the dataif the Method of Matching Moments (MoMM) is used instead of MLE;

In specific examples evaluated here, distributions fitted using MoMM appeared to better
represent the upper tail of the distribution of emissions for a given mode than did
distributions fitted using MLE;

The distribution of emissions within any given modeistypically positively skewed and
for most modes either alognormal or a Weibull distribution could provide an adequate fit
to the data;

There were afew modes out of 56 for which single component distributions (e.g.,
lognormal, Weibull) could not provide a good fit to the data;

Case studies were developed illustrating that two component mixtures of lognormal
distributions could be fit to data sets for which a single component distribution was a
poor fit, and that the mixture distribution provided an excellent fit to the data.

For mixture distributions, MLE is amore readily available and easily applied parameter
estimation method than MoMM; however, the differences between these two techniques
become less important when the fit of the distribution to the datais very good.

The use of parametric distributions, whether single component or mixtures, was shown to
be afeasible approach for characterizing variability.

With regarding to the characterization of uncertainty in mean emissions for specific modes, the
main findings of thiswork are as follows:

The sample sizes are sufficiently large and/or the relative standard error of the means are
sufficiently small, in most cases, so that a normality assumption can be applied for most
modes when estimating uncertainty in the mean emission rates;

The estimation of uncertainty in the mean emission rates can be based directly upon the
data and need not be based upon the distributions fitted to the data to represent
variability; therefore, any discrepancies between the fitted distributions for variability and
the data need not influence the uncertainty analysis,

For situations in which the sample size is less than 40 or the relative standard error of the
mean is greater than 0.2, amore detailed assessment is necessary regarding whether a
normality assumption is appropriate for estimating uncertainty in mean modal emission
rates;

The numerical method of bootstrap simulation can be used to estimate the sampling
distribution of the mean for situations in which a normality assumptions is suspected to
be inaccurate;

The results of bootstrap simulation may sometimes confirm that a normality assumption
is appropriate, or may provide a strong indication that a normality assumption is not
appropriate;

Parametric distributions, such as beta, Weibull, gamma, and lognormal, can befit well to
the distributions of bootstrap replications of the mean in order to compactly represent
uncertainty in mean modal emissions even for casesin which anormality assumptionis
not valid;

The range of uncertainty in mean modal emission ratesis afunction of averaging time;
therefore, it was necessary to develop an averaging time correction factor in order to
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adjust uncertainty estimates devel oped based upon one second averages to uncertainty
estimates applicable for other averaging times;

¢ When comparing a 10 second average to a 1 second average, the range of uncertainty
increases by afactor of approximately 2.5;

e A method was demonstrated for estimating averaging time correction factors; the results
of analysis of data from the modeling database suggest that the rate of increase of the
correction factor becomes small for an averaging time of 10 seconds; therefore, the
correction factor values estimated for the 10 second averaging time are suggested for use
for averaging times longer than 10 seconds.

e The averaging time correction factor has some sensitivity to average V SP within a mode;
therefore, a“bin adjustment factor” was developed in order to produce a mode-specific
refined estimate of the correction factor.

With respect to the estimation of uncertainty in total emissions, the key findings of thiswork are
asfollows:

e Monte Carlo simulation is a flexible method for accounting for uncertainty in not just the
modal emission rates but also in activity data, such as the percentage of time spent in
each mode;

e The computational burden of Monte Carlo simulation depends on the selected sample
size for the numerical ssimulation of uncertainty; the choice of sample size can be made
taking into account trade-offs between the precision of the estimate of uncertainty in the
model output versus computational time. Furthermore, techniques such as Latin
Hypercube Sampling can be used to reduce the sample size for a given level of precision
in the estimated distribution for amodel output;

e For simple modelsinvolving linear combinations of normal distributions, an analytical
approach will give an exact solution with relatively little computational burden; however,
in order to include uncertainty from activity data in addition to uncertainty in modal
emission rates, the analytical approach must be modified to an approximate approach;

e Theresults obtained from Monte Carlo ssimulation and from the analytical solution for
linear models based upon normality were shown to be equivalent for a case study of
estimating uncertainty in total emissions for a standard driving cycle;

e Based upon case studies for four driving cycles, four pollutants, and four vehicle strata,
the key insights are that: (1) the amount of uncertainty appears to increase as the average
V SP or range of VSP of a cycle increases; (2) the amount of uncertainty is a function of
sample size; and (3) the relative amount of uncertainty is smallest for CO,, largest for
both HC and CO, and in between for NOy. For the specific case studies, the uncertainty
range was as narrow as plus or minus 1 percent for CO, and as large as plus or minus 30
percent for HC and CO;

e Uncertainty estimates for total emissions of individual vehicles can be aggregated to
make estimates of uncertainty in total emissions for afleet of vehicles;

e Inter-vehicle variability in speed traces for a standardized driving cycle had little
influence on the uncertainty estimates for multiple vehicles for the case study of the
ART-EF cycle;
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Therelative range of uncertainty in total emissions for multiple vehiclesisrelatively
insensitive to the number of vehicles even when there isinter-vehicle variability with
respect to a standard speed trace, for the example of the ART-EF cycle.

The recommendations based upon this work include the following with respect to quantification
of variability:

It isfeasible to use parametric distributions to represent variability in emissions for
specific modes and the use of parametric distributionsis preferred over empirical
distributions because they represent a more compact method of summarizing variability.
The Method of Matching Moments appears to be a preferred method for fitting
distributions to data because the mean and standard deviation of the fitted distribution
will be the same as that of the data and because distributions fitted using MoMM appear
to provide a better fit to the upper tail of the distribution, compared to MLE. Therefore,
the use of MoOMM is recommended for additional evaluation and application.

Single component distributions such as lognormal and Weibull distributions will typically
be able to adequately describe variability for most modes.

In cases where single component distributions fail to provide an adequate fit, atwo
component lognormal mixture distribution is recommended as a strong candidate for
substantially improving the fit.

It is not necessary for the uncertainty analysis to be conditioned on the distributions fitted
to represent variability within modes; therefore, if there are discrepancies between the
fitted distributions and the data, such discrepancies need not introduce any error into the
uncertainty analysis.

With respect to quantification of uncertainty in mean modal emission rates, the recommendations
based upon this work include the following:

The development of uncertainty estimates for mean emissions should be based directly
upon the data if there are problemsin fitting distributions for variability to the data;
however, if the fits of the distributions for variability are good, then the uncertainty
analysis can be based either upon the data or upon the fitted distributions for variability;
A normality assumption will typically be adequate for most modal emission rates as long
asthere are sufficient data;

For modes for which the sample size is less than 40 and/or the relative standard error of
the mean is greater than 0.2, the assumption of normality should be tested by developing
a sampling distribution of uncertainty in the mean based upon bootstrap simulation;

For cases in which anormality assumption is not valid, bootstrap simulation can be used
to estimate a distribution of bootstrap replications of the mean, and a parametric
distribution such as beta, Weibull, gamma, or lognormal can be fit to the distribution of
the means;

The range of uncertainty in modal emission rates must be adjusted for different averaging
times using an approach such as the correction factor and bin adjustment factor approach
demonstrated here.
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With respect to the quantification of uncertainty in total emissions, the recommendations based
upon this work include the following:

A simple analytical approach for estimating uncertainty in total emissions is adequate as
long as the uncertainty in modal emission estimates are normal or approximately normal
for most or all of the modes and as long as there is no need to include uncertainty in
vehicle activity in the estimate;

An analytical calculation method based upon normality can be included for comparison
purposes even if aMonte Carlo method is also used; for example, results from the
analytical method could be used as a quality assurance check on the Monte Carlo
simulation results;

A Monte Carlo simulation-based methods, including variants based upon Latin
Hypercube Sampling, is recommended if the objective isto include uncertainty in activity
as an input to the estimation of uncertainty in total emissions;

In situations for which the sample sizes are small and/or the variability in dataislarge,
normality assumptions will not be valid. For such situations, a Monte Carlo-based
method is preferable.

The range of uncertainty is sufficiently large in many cases that a quantitative uncertainty
analysisiswell-justified.

181






8 FEASIBILITY OF ESTIMATING MODAL EMISSIONSFROM AGGREGATE
BAG DATA

The objective of thistask is to evaluate a methodology for deriving modal emission rates from
datain which only aggregate emission results are available, in order to answer the key question:
How should aggregate bag data be analyzed to derive estimates of modal emission rates? The
first section provides background and theory, upon which the analyses in the later sections are
based.

8.1 Methodological Overview

In order to estimate modal emission rates, the fraction of time spent in each mode for adriving
cycleis estimated based upon the second-by-second speed trace used for the bag measurements
(preferably the actual speed trace for the test, as opposed to the nominal speed trace), and any
other available information regarding simulation of loads with the dynamometer. A system of
equations for the unknown modal emissions, the fraction of time in each mode, and the total
(agrgretage) emissions is developed since the average emission rate for each trip can be
represented by the fraction of time spent in each mode multiplied by modal emission rate. For
example for four different modes for running exhaust emissions, as was the case for the shootout
project that was conducted by NCSU, the following equation was specified (Frey, Unal, and
Chen, 2002):

ERcs X ftes + ERigle X ftigle + ERaccal X flaccd + ERdecal X ftdecel + ERGruise X fteruise = ERave (8-1)

where,
ER; =emission rate for modei (g/sec)
ft; = fraction of time spent in mode i
Subscripts
cs = cold start mode
idle =idlemode

accel = acceleration mode
decel = deceleration mode
cruise = cruise mode

ave = average of al modes

From the bag data, the average emission rate for the entire bag (or trip) can be estimated. From
the speed trace, the fraction of time in each mode can be estimated. Therefore, the unknowns are
the modal emission rates.

In order to solve systems of equations such as the one given in Equation (8-1), there are different
methods. A system where the number of equations used is the same as the number of unknowns
isidentified asa“square” system, and has unique solutions (Kress, 1998). For “square” systems,
an exact solution is sought by using methods such as Gaussian Elimination.

Systems which have a number of equations less than the number of unknowns are identified as
“underdetermined” systems, and the solutions of these systems of equations are not unique.
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Such systems can be converted to "square” systems by adding additional equations, such as an
assumption regarding the ratio of the g/sec emission rate for one mode with respect to another.

Conditions where there are more equations than unknowns are identified as “ overdetermined”
cases. Inthese cases, which are likely to be common with respect to the use of existing vehicle
emissions bag data, |east-squares methods can be used to find solutions (Kress, 1998).

According to Kress (1998), in order to be able to solve linear systems directly, the system should
be “well-conditioned”, rather than “ill-conditioned”. “Ill-conditioned” systems occur when small
errorsin the data of alinear system cause large errors in the solution (Kress, 1998; Hildebrand,
1987). The minimum number of equations (i.e., one equation represents one measurement of
bag data) that are desirable in order to have awell-conditioned system will depend on number of
unknowns, which is the number of modal “bins’ in this case. Techniques for solving well-
conditioned over-determined systems include |east-sgquares regression and constrained |east-
squares. In the latter method, constraints can be included. For example, if it is known that
emissions in one mode should be less than that of other modes, this can be added as a constraint
in the system. Further, a non-negativity constraint can be included. In this study, both Least-
Squares and Constrained L east-Squares were investigated. From the previous study it was
observed that Constrained L east-Squares produced good results.

The performance of the modal emission estimation approach based upon aggregate data was
evaluated based upon application of the method to second-by-second data. Specifically, the
second-by-second data were used to estimate the fraction of time spent in each mode and the
total (or trip average) emission rate. The calculation procedure described above was applied to
estimate the modal emission rates. The estimated modal emission rates were compared to the
actual modal emission rates. Uncertainty in the predictions of the solution technique were
characterized by evaluating the distribution of the differences between the predicted modal
emission rates and the actual modal emission rates. Ideally, if the solution method is unbiased,
the average difference between the predicted and actual modal emission rates will be zero. If the
average difference is not zero, then thereisabias. The magnitude of the bias was evaluated to
determine whether it was significant. The uncertainty in the modal emission estimates obtained
from the bag (aggregate) data must be considered in the uncertainty analysis of the emissions
model if these modal emission estimates are used in the model.

8.2 Bag-Based Modal Emissions Estimation for Four Modes (I1dle, Acceleration, Cruise,
Deceleration) and for 14 VSP Modes

The objective of this portion of the work was to develop a methodology for deriving modal
emission rates from data in which only aggregate emission results are available. The method
was first applied to relatively simple modal emission models, including the four basic modes of
idle, acceleration, cruise, and decel eration defined by NCSU in previous work and the 14 VSP
modes defined in this project. The generic equation underlying the estimation process can be
specified as:

ER.* fty+ ...+ ER* ft; +... + ERy* ft, = ERayg (8-2)

Where,
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ER; : emission rate for mode | (g/sec)

ft; : fraction of time spent in modei
Subscripts:

i mode i

n:  total number of modes

avg: average of all modes

From the bag data, the average emission rate for the entire bag (or trip) can be estimated. From
the speed trace, the fraction of time in each mode can be estimated. Therefore, the unknowns are
the modal emission rates.

Initially, tests of the method were done on two preliminary versions of modal definitions,
including the four original NCSU based bins and the 14 V SP based bins developed in this
project. The NCSU approach is comprised of four driving modes: idle, acceleration,
deceleration, cruise, which are assigned mode numbers from 1 to 4 sequentially for purposes of
thisanalysis.

Because the equation above corresponds to one trip and there are hundreds of tripsin the data
set, the equation is an “overdetermined” square system in which there are more equations than
unknown variables. The techniques for solving such systems include | east-squares and
constrained |east-squares as previoudly discussed. We used both of them and compared their
applicability.

The basic assumption of the least squares method isto find a curve that has the minimal sum of
the deviations squared (least square error) from a given set of data:

Min y =f(X)* fy(X) + ...+ fi(x)* fi(x) +... + f(X)* fm(X) (8-3)

Where

fi(x) = ftir* xg +...+ ftij* Xjt...+ ftin* X — ERavgi

X;. the emission rate of mode j

m: number of trips

n: number of modes

ERavgi : aggregated emission rate for al modesin trip i(g/sec)

Ft; : fraction of time spentin modej intripi

For the constrained least square method, the approach is to solve the above least squares problem
additionally with some constraints which may be linear or non-linear equations or inequalities.
For example, it is known that emission rates in the acceleration mode should be larger than that
in the idle modes, from which, we can assume: Xaeea > Xigie - The constrained least squares
problem is a special form of Nonlinear Programming, which is one of the classic topicsin
Operations Research. In the NLP terminology, the previous equation is an objective function
which is nonlinear and quadratic.

At first, only simple constraints were used, but results with these were not promising, so strict

constraints were created. Hence, there are 3 tests conducted respectively on each pollutant for
each binning approach: unconstrained, basic constraints, and strict constraints. The basic
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constraints just consider the order of emission rates of all the modes and their non-negative
characteristic. For example, the following is the set of basic constraints set for the NCSU
approach used in the test:

Xo>Xy>X3>X1>0 (8'4)

Where X,. emission rate of acceleration mode
X4 emission rate of cruise mode
X3 emission rate of deceleration mode
X, emission rate of idle mode

If the space of the control variables X is not sufficiently focused, it is possible that the estimated
optimal value of X* might liein an areathat isinfeasible, such as negative values. Thus, the
more concentrated the effective space of X is, the more accurate the test results would typically
be. Based on this, strict constraints were developed. To develop the strict constraints, the
emission rates of each mode for each trip were calculated as ratios with respect to the smallest
emission rate among all the modes, which isidle in the case of the NCSU approach, and then
statistically summarized over the al the trips to get the means and confidence limits of those
ratios. These ratios were used to develop the strict constraints.. The strict constraints also
include either explicitly or implicitly the basic constraints set. Since the form of the latter was
shown above, here just the additional strict constraints are displayed:

a* X< Xj <b* Xq (8-5)

where X;.thelowest emission rate among all the modes
a the low bound of confidence limitsfor ratio Xi/ X; (confidence=0.05)
b: the high bound of confidence limits of ratio X;/ X; (confidence=0.05)

Below is an example of complete strict constraints set for HC emissions based upon NCHRP
data under the NCSU bin approach:

Xo>X4>X3>X1>0 (8-6)
56.5* X1< Xy <734* X,
18* X1< X3 < 7.1* X3
3.6* X1< X3 <13.3* X4
Where X, emission rate of acceleration mode
X4 emission rate of cruise mode
X3 emission rate of deceleration mode
X, emission rate of idle mode

The SAS mathematical programming software was used to solve the above NLP problem. The
test was done based upon the NCHRP data set, which has more than one hundred trips and
92,000 observations. The results are shown in Tables 8-1 through 8-4 for NO,, HC, CO, and
CO,, respectively. The results are summarized graphically in Figures 8-1 through 8-4 for the
same four respective pollutants. The resultsindicate that for the analysis of only four modes, the
accuracy of estimating the average modal emission ratesisless than desirable. For example, the
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Table 8-1. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for NO,: Comparison of No Constraint, Basic Constraint,
and Strict Constraint Solutions.

Mode Actual NC? ERROR’ c’ ERROR" sce ERROR®
Erl 2.84 -12.3 -5.35 0 -1 0.78 -0.72
Er2 65.5 -285 -5.35 28.44 -0.57 34.05 -0.48
Er3 3.18 972.02 | 304.94 28.44 7.95 3.49 0.1
Erd 22.76 -148.98 -7.54 28.44 0.25 31.81 0.4
Avg. Error 1314 244 043

Table 8-2. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for HC: Comparison of No Constraint, Basic Constraint,
and Strict Constraint Solutions.

Mode Actual NC? ERROR® c’ ERROR" sce ERRORY
Erl 1.18 28.69 -23.36 0 1 0.49 0.59
Er2 19.7 -207.09 11.51 8.38 0.57 27.54 -0.4
Er3 2.8 295.24 | -104.39 8.38 -1.99 3.46 -0.23
Er4 6.58 -12.31 2.87 8.38 -0.27 4.05 0.38
Avg. Error 35.53 0.96 04

Table 8-3. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Data for
Four NCSU Driving Modes for CO: Comparison of No Constraint, Basic Constraint,
and Strict Constraint Solutions.

Mode Actua NC? ERROR® cP ERROR® sC° ERROR®
Erl 20.04 -3561.8 | 178.74 0 1 1.02 0.95
Er2 2013.96 -3957.6 2.97 688.62 0.66 1345.18 0.33
Er3 77.15 31522 | -407.57 688.62 -7.93 152.54 -0.98
Erd 44711 -6407.3 15.33 688.62 -0.54 636.76 -0.42
Avg. Error 151.15 2.53 0.67

Table 8-4. Results of Estimation of Modal Emission Rates (g/sec) from Aggregate Data for Four
NCSU Driving Modes for CO,: Comparison of No Constraint, Basic Constraint, and
Strict Constraint Solutions.

Mode Actual NC? ERROR® cP ERROR’ sct ERROR®
Erl 0.89 1.67 0.87 0 -1 0.96 0.07
Er2 5.76 -45.07 -8.82 3.4 -0.41 461 -0.2
Er3 0.98 84.78 85.14 34 2.46 1.01 0.02
Er4 3.29 -5.87 -2.78 34 0.03 3.65 0.11
Avg. Error 24.4 0.97 0.1

Notes for Tables 8-1 through 8-4:
#NC: No Constraint

b C: Constraint
¢ SC: Strict Constraint
9Error: (Predicted-Actual)/Actual
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Figure 8-1. Predicted versus Observed NOx NCSU Modal Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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Figure 8-2. Predicted versus Observed HC NCSU Moda Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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Figure 8-3. Predicted versus Observed CO NCSU Moda Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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Figure 8-4. Predicted versus Observed CO, NCSU Moda Emission Rates Estimated From
NCHRP Data Using the Strict Constraints Approach.
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slopes of the best fit linesin the parity plots deviate substantially from an ideal value of 1 for al
four pollutants. However, the strict constraints do produce modal estimates that qualitatively
preserve the relative ordering among modes and that yield an acceleration mode with an
emission rate substantially higher than for the other modes.

The results based upon application to the 14 V SP-based modes are shown in Tables 8-5 through
8-8 and Figures 8-5 through 8-8 for NOy, HC, CO, and CO,, respectively. These results are
generally more promising, with the slope of the best fit line in the parity plots closer to one than
was the case for the analysis based upon only four modes, and with coefficients of determination
for the parity plotsin excess of 0.80. The results are especially promising for CO..

As exspected, among three types of test, the test based on strict constraints gave the best
performance, which confirms that the focus on the effective area of the control variables X will
improve the predication accuracy.

Comparing the differences among the four pollutants, only the results for CO, are satisfying,
with a predication error of approximately 10% or less. A possible reason for the superior results
with CO; but not for the other pollutantsisthat is CO, has small inter-trip and inter-vehicle
variance of the modal emission rates. Too much variability in modal emission rates from one
vehicle to another may be the source of difficultiesin estimation of modal rates for the other
pollutants.
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Table 8-5. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Datafor 14
VSP Modes for NO,: Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.

NO, Actual NC? ERROR" cP ERROR’ Sce ERROR"
ER1 454 357.88 77.82 11.23 1.47 2.53 -0.44
ER2 4.66 109.4 22.48 0 -1 2.47 -0.47
ER3 4.27 154.63 35.18 11.23 1.63 1.24 -0.71
ER4 13.71 -83.57 -7.09 11.23 -0.18 8.12 -0.41
ER5 20.26 -10.52 -1.52 11.23 -0.45 11.52 -0.43
ER6 25.97 -583.9 -23.48 11.23 -0.57 12.14 -0.53
ER7 34.1 -423.49 -13.42 11.23 -0.67 12.14 -0.64
ERS 48.69 -533.89 -11.97 11.23 -0.77 29.89 -0.39
ER9 61.91 260.33 3.21 11.23 -0.82 48.79 -0.21
ER10 86.39 515.21 4.96 95.29 0.1 66.9 -0.23
ER11 123.44 576.05 3.67 95.29 -0.23 80.16 -0.35
ER12 173.84 295.88 0.7 95.29 -0.45 93.48 -0.46
ER13 176.49 908.56 4.15 381.74 1.16 1185 -0.33
ER14 201.72 849.94 3.21 1283.26 5.36 211.03 0.05
Avag. Error 15.2 1.06 04

2NC: No Constraint

b C: Constraint
¢ SC: Strict Constraint
4Error: (Predicted-Actual)/Actual

Table 8-6. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Datafor 14
VSP Modesfor HC: Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.

HC Actual NC? ERROR’ cP ERROR’ sct ERROR®
ER1 3.69 130.98 34,51 0 -1 2.25 -0.39
ER2 2.27 0.84 56.12 0 -1.63 1.41 -0.63
ER3 1.92 23.35 66.48 552 -1.93 1.16 -0.75
ER4 4.02 2.09 31.65 0 -0.92 3.01 -0.36
ER5 5.97 -61.98 21.34 5.52 -0.62 4.04 -0.24
ER6 6.07 -177.83 20.96 5.52 -0.61 4.96 -0.24
ER7 7.57 49.79 16.82 552 -0.49 8.87 -0.19
ERS 11.15 -16.64 11.41 5.52 -0.33 8.87 -0.13
ER9 13.71 215.81 9.28 35.33 -0.27 22.33 0.1
ER10 17.22 -169.45 7.39 35.33 -0.21 22.33 -0.08
ER11 28.09 110.83 453 35.33 -0.13 39.42 -0.05
ER12 50.43 -98.42 252 35.33 -0.07 39.42 -0.03
ER13 73.6 -180.59 1.73 35.33 -0.05 50.35 -0.02
ER14 98.75 146.08 1.29 211.99 -0.04 248.96 -0.01
AvgError 20.43 0.59 0.23

aNC: No Constraint

b C: Constraint
¢ SC: Strict Constraint
9Error: (Predicted-Actual)/Actual

191




Table 8-7. Results of Estimation of Modal Emission Rates (mg/sec) from Aggregate Datafor 14
VSP Modesfor CO: Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.

CO Actual NC? ERROR’ c’ ERROR" Sce ERRORY
ER1 149.59 23220 154.22 0 -1 121.22 -0.19
ER2 124.14 -2308 -19.6 0 -1 0 -1
ER3 83.59 -2028 -25.27 0 -1 36.62 -0.56
ER4 273.76 -2467 -10.01 0 -1 179.45 -0.34
ER5 338.76 -13068 -39.58 0 -1 179.45 -0.47
ER6 307.11 -2760 -9.99 0 -1 310.19 0.01
ER7 393.27 -1282 -4.26 1716 3.36 595.48 0.51
ER8 608.03 7636 11.56 1716 1.82 1114.42 0.83
ER9 755.63 17311 21.91 3403.35 35 1722.36 1.28
ER10 1015.26 -21646 -22.32 3403.35 2.35 1722.36 0.7
ER11 2063.31 -7639 A7 3403.35 0.65 4262.86 1.07
ER12 5530.73 -17753 -4.21 3403.35 -0.39 7571.34 0.37
ER13 10336.3 -31840 -4.08 3403.35 -0.67 7571.34 -0.27
ER14 16338.64 -39599 -3.42 3403.35 -0.79 13287 -0.19
AvgError 23.94 14 0.56

#NC: No Constraint

b C: Constraint

¢ SC: Strict Constraint

9Error: (Predicted-Actual)/Actual

Table 8-8. Results of Estimation of Modal Emission Rates (g/sec) from Aggregate Datafor 14
V'SP Modes for CO,: Comparison of No Constraint, Basic Constraint, and Strict

Constraint Solutions.

CO, Actua NC? ERROR® cP ERROR’ sct ERROR’

ER1 1.09 14.78 12,52 1.28 0.17 1.04 -0.05
ER2 1.26 4.43 25 1.28 0.01 1.19 -0.06
ER3 1.26 3.83 2.05 1.15 -0.08 1.23 -0.02
ER4 2.46 -4.37 -2.78 1.28 -0.48 2.32 -0.06
ER5 3.2 -9.19 -3.87 1.28 -0.6 3.07 -0.04
ER6 3.95 9.73 1.46 6.18 0.56 3.81 -0.04
ER7 4.69 -2.04 -1.44 6.18 0.32 4.95 0.05
ERS 5.52 -3.63 -1.66 6.18 0.12 5.81 0.05
ER9 6.41 9.47 0.48 6.18 -0.04 6.77 0.06
ER10 7.42 -8.69 -2.17 6.18 -0.17 7.82 0.05
ER11 8.89 17.11 0.93 7.04 -0.21 9.27 0.04
ER12 10.61 6.73 -0.37 7.04 -0.34 10.49 -0.01
ER13 11.87 9.74 -0.18 7.39 -0.38 11.75 -0.01
ER14 13.34 33.77 1.53 435 2.26 13.03 -0.02
AvgError 2.42 0.08 0.04

#NC: No Constraint

b C: Constraint

¢ SC: Strict Constraint

9Error: (Predicted-Actual)/Actual
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Figure 8-5. Predicted versus Observed NO, Modal Emission Rates Based upon the 14 Mode
V SP Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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Figure 8-6. Predicted versus Observed HC Modal Emission Rates Based upon the 14 Mode VSP
Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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Figure 8-7. Predicted versus Observed CO Modal Emission Rates Based upon the 14 Mode VSP
Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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Figure 8-8. Predicted versus Observed CO, Moda Emission Rates Based upon the 14 Mode
V SP Approach Estimated From NCHRP Data Using the Strict Constraints Approach.
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8.3 Bag-Based Modal Emissions Estimation for the" 56-bin" VSP-based Approach

In this section, evaluation of the modal estimation method for bag data was applied to the
stratified bin approach. The original NCHRP data set was divided into 4 subsets of datain terms
of odometer reading and engine displacement, based upon cut points of 50K miles and 3.5 liters,
respectively. For each of the four subsets, the 14 V SP modes were applied. From the previous
section, akey conclusion was that the strict-constraint method is more effective than the
unconstrained and basic-constraint methods. Thus, the focus in this section was upon the strict
constraint method. In the previous section, the strict constraints were devel oped based upon
analysis of the NCHRP data set. In this section, the ranges for the strict constraints were
developed based upon the NCHRP data set and, alternatively, based upon the modeling data set.

The results of the predicted modal emission rates estimated from the aggregate data, and the
observed values, are shown in Tables 8-9 through 8-24. There are four tables for each pollutant,
with each of the four tables representing a different vehicle strata with respect to odometer
reading and engine displacement. All of the results for CO, based upon the strict constraints
cases are shown in Figures 8-9 through 8-16. Selected results for the modal emissions estimated
for HC are shown in Figures 8-17 through 8-22.

Theresults for CO, were generally very good, especially for the case in which the range of
values for the constraints were estimated from datain the NCHRP database. For all four vehicle
strata, the average relative error in the predicted versus observed modal emission rates was less
than 10 percent, except for the first strata (odometer reading < 50,000 miles, engine displacement
< 3.5 liters) when constraints were devel oped based upon the modeling database. These results
imply that when the constraints are more representative of the data from which the modes are
being estimated, the results will tend to be better. Figure 8-11 and 8-12 illustrate that the modal
emission rates for CO2 estimated using the constraints estimated from the NCHRP data are
better than those estimated using the constraints based upon the modeling database. In
particular, the slope of the trend line for the predicted versus observed modesiis closer to one,
indicating a more accurate result. A similar comparison can be observed for Figures 8-13 and 8-
14.

The results for HC were generally not as good as those for CO,. The average relative errors for
the modal estimates, asindicated in Tables 8-13 through 8-16, were typically 0.37 to 0.64 for the
six cases in which results could be obtained. In two cases, it was not possible to get a solution.
The predicted modal emissions tend to be low for the higher VSP modes, asillustrated in Figures
8-17 through 8-19, although there are examples in Figures 8-20 through 8-22 in which the
predictions for the higher VSP modes are relatively more accurate.

For both NO, and CO, the estimation method failed for most cases. For NO;, it was possible to
get resultsin only three of eight cases, and the errorsin these cases ranged from 0.24 to 0.55.
For CO, it was possible to get resultsin only two of eight cases, with errors of 0.48 and 0.94.

Overdll, the key findings of the attempts to estimate modal emission rates for the 56-bin

approach based upon NCHRP data were: (1) the method worked well only for CO,; the method
worked for HC for most cases but the accuracy of the predictions was less than desirable; and (3)
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Table 8-9. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO, Emissions (g/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actua CONSTRAINT ALLDATA | Error® CONSTRAINT NCHRP | Error #
ER1 0.94 1.58 0.68 0.91 -0.03
ER2 1.06 151 0.42 0.95 -0.10
ER3 1.2 1.26 0.05 1.08 -0.10
ER4 2.21 2.16 -0.022 2 -0.10
ER5 2.86 2.62 -0.084 2.63 -0.08
ERG 3.53 3.03 -0.14 3.25 -0.08
ER7 4.19 4.25 0.014 4.51 0.08
ER8 4.92 4.82 -0.02 5.31 0.08
ER9 5.74 5.51 -0.04 6.18 0.08
ER10 6.67 6.18 -0.07 7.13 0.07
ER11 7.82 7.34 -0.06 8.65 0.11
ER12 9.49 9.2 -0.03 9.9 0.04
ER13 10.89 11.61 0.066 11.48 0.05
ER14 12.08 12.29 0.017 12.18 0.01
Avg. Error 0.122 0.072

Error: (Predicted-Actual)/Actual

Table 8-10. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO, Emissions (g/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actua CONSTRAINT ALLDATA | Error® CONSTRAINT NCHRP | Error #

ER1 1.03 1.24 -0.20 1.01 0.019
ER2 1.31 1.4 -0.07 1.18 0.099
ER3 1.07 1.08 -0.01 1 0.065
ER4 2.4 2.29 0.05 2.17 0.096
ER5 3.15 2.85 0.10 29 0.079
ER6 3.84 3.46 0.10 3.58 0.068
ER7 4.55 5.07 -0.11 4.86 -0.068
ER8 5.32 5.81 -0.09 5.68 -0.068
ER9 6.16 6.56 -0.06 6.6 -0.071
ER10 7 7.55 -0.08 7.54 -0.077
ER11 8.43 8.66 -0.03 9.07 -0.076
ER12 9.91 8.66 0.13 10.54 -0.064
ER13 10.54 9.15 0.13 11.27 -0.069
ER14 11.92 9.9 0.17 11.27 0.055
Avg. Error 0.09 0.070

4Error: (Predicted-Actual)/Actual
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Table 8-11. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO, Emissions (g/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actual CONSTRAINT_ALLDATA | Error? CONSTRAINT_NCHRP | Error ?

ER1 15 1.56 -0.04 1.55 -0.033
ER2 1.53 1.66 -0.08 141 0.078
ER3 1.66 1.33 0.20 1.52 0.084
ER4 2.93 2.36 0.19 2.63 0.102
ER5 3.88 2.93 0.24 3.7 0.046
ER6 4.94 5.46 -0.11 4.75 0.038
ER7 5.95 6.55 -0.10 6.67 -0.121
ER8 7.05 7.95 -0.13 7.9 -0.121
ER9 8.23 7.95 0.03 9.28 -0.128
ER10 9.64 7.95 0.18 9.28 0.037
ER11 11.13 12.94 -0.16 12.25 -0.101
ER12 14.24 18.87 -0.33 15.19 -0.067
ER13 15.84 18.87 -0.19 15.25 0.037
ER14 17.47 18.87 -0.08 15.25 0.127
Avg. Error 0.15 0.080

4Error: (Predicted-Actual)/Actual

Table 8-12. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO, Emissions (g/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actua CONSTRAINT ALLDATA | Error® CONSTRAINT _NCHRP | Error ®
ER1 1.67 1.64 0.018 1.64 0.02
ER2 1.97 2.15 -0.091 2.15 -0.09
ER3 1.69 1.54 0.089 154 0.09
ER4 35 3 0.143 3 0.14
ER5 4.48 4.07 0.092 4.07 0.09
ER6 5.46 5.1 0.066 5.1 0.07
ER7 6.48 6.74 -0.040 6.74 -0.04
ER8 7.64 6.97 0.088 6.97 0.09
ER9 8.83 9.42 -0.067 9.42 -0.07
ER10 10.3 11.36 -0.103 11.36 -0.10
ER11 12.54 13.41 -0.069 13.41 -0.07
ER12 14.75 13.41 0.091 1341 0.09
ER13 16.96 20.25 -0.194 20.25 -0.19
ER14 18.76 21.42 -0.142 21.42 -0.14
Avg. Error 0.092 0.09

Error: (Predicted-Actual)/Actual
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Table 8-13. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. HC Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actua CONSTRAINT _ALLDATA | Error® CONSTRAINT _NCHRP | Error ®
ER1 2.18 0 3.26 -0.50
ER2 1.67 0 0.93 0.44
ER3 1.82 0 1.16 0.36
ER4 4.11 0 2.75 0.33
ER5 4.16 0 3.26 0.22
ER6 5.37 0 7.09 -0.32
ER7 6.56 0 7.79 -0.19
ER8 8.82 0 7.79 0.12
ER9 10.52 0 7.91 0.25
ER10 13.25 0 26.16 -0.97
ER11 24.06 0 27.79 -0.16
ER12 31.79 0 27.79 0.13
ER13 59.91 0 27.79 0.54
ER14 70.41 0 27.79 0.61
Avg. Error 0.37

4Error: (Predicted-Actual)/Actual

Table 8-14. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. HC Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actual CONSTRAINT_ALLDATA | Error? CONSTRAINT_NCHRP | Error ®
ER1 4.98 2.52 0.494 2.37 0.52
ER2 2.06 1.73 0.160 1.27 0.38
ER3 0.95 1.33 -0.400 0.91 0.04
ER4 311 2.79 0.103 2.18 0.30
ER5 5.15 3.19 0.381 2.73 0.47
ER6 5.17 4.38 0.153 3.73 0.28
ER7 6.17 11.42 -0.851 11.65 -0.89
ERS8 7.67 13.01 -0.696 11.65 -0.52
ER9 13.26 13.01 0.019 11.65 0.12
ER10 15.18 27.09 -0.785 28.75 -0.89
ER11 24.58 42.49 -0.729 46.4 -0.89
ER12 44.64 42.49 0.048 46.4 -0.04
ER13 70.17 42.49 0.394 46.4 0.34
ER14 116.55 42.49 0.635 46.4 0.60
Avg. Error 0.418 0.45

4Error: (Predicted-Actual)/Actual
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Table 8-15. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. HC Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actua CONSTRAINT _ALLDATA | Error® CONSTRAINT _NCHRP | Error ®
ER1 1.58 0 0.94 041
ER2 1.45 0 0.75 0.48
ER3 1.84 0 2.48 -0.35
ER4 2.39 0 2.01 0.16
ER5 9.17 0 44 0.52
ER6 4.72 0 5.42 -0.15
ER7 5.48 0 5.42 0.01
ER8 113 0 27.42 -1.43
ER9 12.66 0 2742 -1.17
ER10 20.14 0 2742 -0.36
ER11 20.14 0 42.75 -1.12
ER12 71.33 0 91.07 -0.28
ER13 70.54 0 91.07 -0.29
ER14 77.97 0 91.07 -0.17
Avg. Error 0.49

4Error: (Predicted-Actual)/Actual

Table 8-16. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. HC Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actua CONSTRAINT ALLDATA | Error?® CONSTRAINT _NCHRP | Error ®
ER1 10.75 1.59 0.852 1.59 0.85
ER2 7.39 1.78 0.759 1.78 0.76
ER3 5.71 3.8 0.335 3.8 0.33
ER4 8.51 0 1.000 0 1.00
ER5 15 7.29 0.514 7.29 0.51
ER6 14.76 8.35 0.434 8.35 0.43
ER7 20.53 9.15 0.554 9.15 0.55
ER8 35.71 44.64 -0.250 44.64 -0.25
ER9 34.84 86.61 -1.486 86.61 -1.49
ER10 43.06 86.61 -1.011 86.61 -1.01
ER11 64.77 122.99 -0.899 122.99 -0.90
ER12 137.02 122.99 0.102 122.99 0.10
ER13 161.42 122.99 0.238 122.99 0.24
ER14 209.61 315.45 -0.505 315.45 -0.50
Avg. Error 0.639 0.64

Error: (Predicted-Actual)/Actual
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Table 8-17. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. CO Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actual CONSTRAINT _ALLDATA | Error® CONSTRAINT _NCHRP | Error?
ER1 144.4 0 116.78 0.19
ER2 86.18 0 354 0.59
ER3 82.35 0 45.98 0.44
ER4 284.3 0 179.31 0.37
ER5 283.62 0 210.11 0.26
ERG6 300.11 0 279.07 0.07
ER7 393.08 0 479.53 -0.22
ER8 625.93 0 479.53 0.23
ER9 749.09 0 2438.1 -2.25
ER10 1033.99 0 2684.08 -1.60
ER11 2576.85 0 2684.08 -0.04
ER12 3944.7 0 3204.4 0.19
ER13 8785.4 0 8891.55 -0.01
ER14 12567.67 0 8891.55 0.29
Avg. Error 0.48

4Error: (Predicted-Actual)/Actual

Table 8-18. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actual CONSTRAINT ALLDATA | Error® CONSTRAINT _NCHRP | Error?
ER1 150.28 0 63.17 0.58
ER2 130 0 0 1.00
ER3 48.96 0 30.66 0.37
ER4 2214 0 111.62 0.50
ER5 285.13 0 111.62 0.61
ER6 241.95 0 252.67 -0.04
ER7 277.95 0 340.68 -0.23
ERS8 327.58 0 430.83 -0.32
ER9 519.72 0 2103.27 -3.05
ER10 651.3 0 2225.11 -2.42
ER11 1249.86 0 5239.32 -3.19
ER12 6740.72 0 5239.32 0.22
ER13 12956.1 0 5239.32 0.60
ER14 23713.22 0 22508 0.05
Avg. Error 0.94

Error: (Predicted-Actual)/Actual
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Table 8-19. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates. CO Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading >50,000 Miles.

Mode Actual CONSTRAINT_ALLDATA | Error? CONSTRAINT_NCHRP | Error ?
ER1 80.7 0 0
ER2 129.75 0 0
ER3 130.09 0 0
ER4 227.75 0 0
ER5 637.64 0 0
ER6 280.52 0 0
ER7 416.31 0 0
ER8 696.73 0 0
ER9 1094.9 0 0
ER10 1253.14 0 0
ER11 2031.25 0 0
ER12 8029.59 0 0
ER13 8933.28 0 0
ER14 12979.73 0 0
Avg. Error

4Error: (Predicted-Actual)/Actual

Table 8-20. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: CO Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actual CONSTRAINT ALLDATA | Error® CONSTRAINT _NCHRP | Error?
ER1 263.35 0 0
ER2 316.27 0 0
ER3 145.17 0 0
ER4 440.86 0 0
ERS 456.54 0 0
ER6 592.43 0 0
ER7 740.36 0 0
ERS8 1305.73 0 0
ER9 1135.74 0 0
ER10 1793.1 0 0
ER11 2394.7 0 0
ER12 8240.6 0 0
ER13 13064.57 0 0
ER14 19173.19 0 0
Avg. Error

Error: (Predicted-Actual)/Actual
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Table 8-21. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: NO, Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actual CONSTRAINT _ALLDATA | Error® CONSTRAINT _NCHRP | Error ®
ER1 4.4 6.61 -0.502 0
ER2 3.85 5.82 -0.512 0
ER3 4.41 3.77 0.145 0
ER4 11.8 9.85 0.165 0
ER5 15.52 9.85 0.365 0
ER6 18.17 18.71 -0.030 0
ER7 22.95 18.71 0.185 0
ERS8 33.86 45.54 -0.345 0
ER9 47.21 45.54 0.035 0
ER10 65.22 89.59 -0.374 0
ER11 78.39 89.59 -0.143 0
ER12 137.34 121.26 0.117 0
ER13 141.33 121.26 0.142 0
ER14 183.97 121.26 0.341 0
Avg. Error 0.243

4Error: (Predicted-Actual)/Actual

Table 8-22. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: NO, Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading < 50,000 Miles.

Mode Actual CONSTRAINT ALLDATA | Error® CONSTRAINT _NCHRP | Error ?
ER1 2.66 0 0
ER2 1.39 0 0
ER3 175 0 0
ER4 7.56 0 0
ER5 11.67 0 0
ER6 18.45 0 0
ER7 26.75 0 0
ERS8 37.46 0 0
ER9 53.37 0 0
ER10 68.14 0 0
ER11 65.56 0 0
ER12 125.35 0 0
ER13 141.54 0 0
ER14 120.47 0 0
Avg. Error

Error: (Predicted-Actual)/Actual
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Table 8-23. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: NO, Emissions (mg/sec)
for Engine Displacement < 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actual CONSTRAINT_ALLDATA | Error? CONSTRAINT_NCHRP | Error ?
ER1 1.58 0 0
ER2 1.45 0 0
ER3 1.84 0 0
ER4 2.39 0 0
ER5 9.17 0 0
ER6 4.72 0 0
ER7 5.48 0 0
ER8 113 0 0
ER9 12.66 0 0
ER10 20.14 0 0
ER11 20.14 0 0
ER12 71.33 0 0
ER13 70.54 0 0
ER14 77.97 0 0
Avg. Error

4Error: (Predicted-Actual)/Actual

Table 8-24. Comparison of Modal Emission Rates Estimated Based Upon the Strict Constraints
Approach for Two Different Constraints Versus Actual Rates: NO, Emissions (mg/sec)
for Engine Displacement > 3.5 Liters and Odometer Reading > 50,000 Miles.

Mode Actual CONSTRAINT_ALLDATA | Error? CONSTRAINT_NCHRP | Error ®
ER1 8.2 19.68 -1.400 19.68 -1.40
ER2 9.36 13.18 -0.408 13.18 -041
ER3 8.1 8.46 -0.044 8.46 -0.04
ER4 32.86 41.91 -0.275 41.91 -0.28
ER5 57.24 47.23 0.175 47.23 0.17
ER6 82.87 78.71 0.050 78.71 0.05
ER7 109.92 86.39 0.214 86.39 0.21
ERS8 155.13 137.75 0.112 137.75 0.11
ER9 173.28 177.1 -0.022 177.1 -0.02
ER10 229.28 177.1 0.228 177.1 0.23
ER11 362.89 177.1 0.512 1771 0.51
ER12 490.97 177.1 0.639 177.1 0.64
ER13 485 214.1 0.559 214.1 0.56
ER14 543.47 2172.47 -2.997 2172.47 -3.00
Avg. Error 0.545 0.55

4Error: (Predicted-Actual)/Actual
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Figure 8-9. Predicted versus Observed CO, Moda Emission Rates for 14 V SP Modes Estimated
From NCHRP Data Using Strict Constraints Estimated From the Modeling Database: Engine
Displacement < 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-10. Predicted versus Observed CO, Modal Emission Ratesfor 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:
Engine Displacement < 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-11. Predicted versus Observed CO, Modal Emission Ratesfor 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:
Engine Displacement > 3.5 liter and Odometer Reading < 50,000 Miles.
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Figure 8-13. Predicted versus Observed CO, Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:
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Figure 8-14. Predicted versus Observed CO, Modal Emission Ratesfor 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:
Engine Displacement < 3.5 liter and Odometer Reading > 50,000 Miles.
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Figure 8-15. Predicted versus Observed CO, Modal Emission Rates for 14 VSP Modes
Estimated From NCHRP Data Using Strict Constraints Estimated From the Modeling Database:
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Estimated From NCHRP Data Using Strict Constraints Estimated From the NCHRP Database:
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the method failed in most cases for NO, and CO. A likely reason for the failure to obtain results
in many cases for the 56-bin approach is that the sample sizes for the stratified data sets are
smaller than for the case of the 14-mode approach in the previous section. Animplication is that
it may be necessary to have a sufficient large data set in order to estimate modal emission rates
from aggregate data. It is also apparent that the strict constraint approach produces better results
when the bounds of the constraints are derived from data similar to that being anal yzed.

84  Characterization of Uncertainty in Predicted Modal Emissions

The objective of this part of work isto characterize the distribution of errorsin the predicted
modal emissionsin order to identify whether biasesin the modal estimates are statistically
significant. Because the results from the 56 bin approach were not satisfying, this work was
based upon the results obtained with the 14 V SP bin approach.

In order to characterize uncertainty in the predictions, the distribution of the error of each modal
prediction, based upon the difference between the actual value for each vehicle minus the
predicted value, was estimated. These distributions are summarized by presenting the mean,
standard deviation, 95 percent confidence interval on the mean, and skewness. The results are
presented for NOy, HC, CO, and CO, in Tables 8-25 through 8-28, respectively. The

predictions are based upon the strict constraint method. The average observed and predicted rates
are given in Tables 8-5 through 8-8, respectively, for these same pollutants.

Table 8-25 summarizes the analysis of the distribution of prediction errors among all the vehicles
and cycles in the database for predictions of modal emissions for NO, emissions. The mean
prediction error is given for each V SP mode aong with the standard deviation, lower and upper
limit for the 95 percent confidence interval on the mean, number of data points, and skewness
estimate. The average prediction error for each mode is slightly different than zero, indicating the
possibility that the modal predictions are biased. For example, for VSP mode 11, average
prediction error is-0.0008. However, 95 percent confidence interval on the mean includes zero,
which indicates that at a significance level of 0.05, the mean prediction error is not statistically
significantly different from zero. Furthermore, the average prediction error is not statistically
significantly different from zero for al VSP modes for NO, aswell asfor all other pollutants.
Thus, the results indicate that there are no statistically significant biases in the mean estimates of
the prediction error.

However, the range of the prediction error is substantial in many cases. For example, for NO,
the standard deviation of the prediction error is 5.1 mg/sec for Mode 1, compared to an observed
emission rate of 4.5 mg/sec. Similarly, the standard deviation is 276 mg/sec versus an average
observed emission rate of 202 mg/sec for Mode 14. For NOy, HC, and CO, the standard
deviation of the prediction error is comparable to the average emission rate for each mode. In
contrast, the standard deviation of the prediction error for CO, is approximately one third of the
mean observed emission rate for CO,. When the standard deviation of the prediction error is
large relative to the mean emission rate, the distribution of the prediction error tends to be
positively skewed. For example, the range of skewness of the prediction errors among the 14
VSPmodesis 2.7 to 4.4 for NOy, 2.0t0 5.2 for HC, and 1.0 to 4.3 for CO. In contrast, the
distributions of the prediction errors for CO, tend to have only slight skewness, ranging from a
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Table 8-25. Summary of Analysis of Uncertainty in the Prediction Error for the NO, Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode V SP-Based

Approach.
Lower Upper
Limit Limit
VSP bin Mean Std Dev N (95%) (95%) | Skewness

1 0.0005 5.09 90 -1.05 1.05 2.77
2 -0.0017 5.71 90 -1.18 1.18 2.99
3 0.0043 4.73 90 -0.97 0.98 2.69
4 0.0027 18.64 90 -3.85 3.85 3.25
5 0.0013 28.68 90 -5.92 5.93 3.56
6 0.0019 37.30 90 -7.70 7.71 4.40
7 -0.0046 | 48.75 90 -10.08 10.07 4.38
8 -0.0017 65.79 90 -13.59 13.59 4.03
9 -0.0012 79.83 90 -16.49 16.49 3.76
10 -0.0018 | 104.07 90 -21.50 21.50 2.82
11 -0.0008 | 165.71 77 -37.01 37.01 2.66
12 0.0038 | 220.48 45 -64.42 64.42 2.72
13 -0.0054 | 215.91 41 -66.09 66.08 2.98
14 -0.0016 | 276.33 37 -89.04 89.04 2.74

Table 8-26. Summary of Analysis of Uncertainty in the Prediction Error for the HC Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode V SP-Based

Approach.
Lower Upper
Std Limit Limit
VSP bin Mean Dev N (95%) (95%) | Skewness

1 -0.00188 | 8.41 90 -1.740 1.736 4.45
2 -0.00173 5.03 90 -1.041 1.038 4.38
3 -0.00532 | 4.07 90 -0.847 0.837 4.54
4 0.00137 6.75 90 -1.394 1.396 4.23
5 -0.00490 | 10.49 90 -2.171 2.162 3.48
6 0.00329 | 10.98 90 -2.265 2.271 5.15
7 -0.00247 | 14.32 90 -2.961 2.956 4.90
8 0.00304 | 20.38 90 -4.207 4.213 4.10
9 0.00077 | 21.18 90 -4.375 4.376 3.67
10 0.00335 | 26.06 90 -5.381 5.388 3.62
11 -0.00135 | 41.84 77 -9.348 9.345 3.00
12 -0.00331 | 64.50 45 -18.84 18.84 2.38
13 0.00126 | 85.35 41 -26.12 26.12 2.03
14 -0.00448 | 123.3 37 -39.73 39.72 2.49
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Table 8-27. Summary of Analysis of Uncertainty in the Prediction Error for the CO Modal
Emission Rates (mg/sec) Estimated from Aggregate Data For the 14 Mode V SP-Based

Approach.
Lower Upper
VSP Limit Limit
bin Mean Std Dev N (95%) (95%) Skewness

1 0.0028 233 90 -48.04 48.04 2.3
2 -0.0055 241 90 -49.88 49.87 2.5
3 0.0024 186 90 -38.49 38.50 3.4
4 0.0021 428 90 -88.51 88.52 2.1
5 0.0025 686 90 -141.8 141.8 4.0
6 0.0044 529 90 -109.3 109.3 3.4
7 -0.0005 747 90 -154.3 154.3 4.2
8 0.0042 1250 90 -258.2 258.2 3.7
9 0.0008 1472 90 -304.1 304.1 4.3
10 0.0031 1818 90 -375.5 375.5 4.1
11 0.0036 3324 78 -737.6 737.6 2.8
12 0.0021 190 45 -3859 3859 1.6
13 -0.0001 8622 41 -2639 2639 1.3
14 -0.0044 | 12297 37 -3962 3962 1.0

Table 8-28. Summary of Analysis of Uncertainty in the Prediction Error for the CO, Modal
Emission Rates (g/sec) Estimated from Aggregate Data For the 14 Mode V SP-Based

Approach.
Lower Upper
Std Limit Limit
VSP bin Mean Dev N (95%) (95%) | Skewness

1 0.00336 0.34 90 -0.068 0.075 0.37
2 0.00340 0.45 90 -0.089 0.096 0.53
3 -0.00466 | 0.39 90 -0.086 0.076 0.37
4 -0.00046 | 0.80 90 -0.165 0.164 0.49
5 0.00007 0.89 90 -0.184 0.184 0.28
6 -0.00262 1.02 90 -0.213 0.207 0.17
7 0.00366 1.20 90 -0.245 0.253 0.24
8 -0.00207 1.39 90 -0.289 0.285 0.15
9 0.00160 1.65 90 -0.340 0.343 0.10
10 -0.00313 1.94 90 -0.405 0.398 0.04
11 0.00202 2.49 77 -0.553 0.557 -0.11
12 -0.00189 | 2.67 45 -0.782 0.779 0.45
13 -0.00017 | 2.98 41 -0.911 0.911 0.56
14 0.00237 3.25 37 -1.044 1.049 0.46

magnitude of 0.04 to 0.56 among the 14 modes. These resultsillustrate that the predictions for
CO, are generally substantialy better than those for the other three pollutants.
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The range of uncertainty in the mean prediction error istypically afactor of approximately five
less than the standard deviation of the prediction error, because the 95 percent confidence
interval of the uncertainty in the mean is estimated based upon a factor of 1.96 multiplied by the
standard error of the mean, which in turn is estimated based upon the standard deviation of the
data divided by the square root of sample size. For a sample size of 90, which istypical of many
of the estimates, this amounts to a factor of 0.207 multiplier of the standard deviation to arrive at
the upper and lower ranges of the 95 percent confidence interval. Thus, the range of uncertainty
in the mean error is comparable in many cases to arange of approximately plus or minus 25 to
50 percent of the mean observed emission rate for NOy, HC, and CO, and approximately plus or
minus 7 percent of the mean observed emission rate for CO,. These ranges of uncertainty are
larger than the ranges of uncertainty estimated based upon the modeling database in Chapter 7.
Thus, it would be the case that incorporation of emissions estimates obtained from aggregate
datawould entail additional uncertainty than estimates obtained from second-by-second data.

85  Summary and Conclusions
The key findings from this analysis include:

» Thestrict constraint method gave the best results.

» Theleast squares optimization method with strict constraints worked for all of the cases
for the four driving cycle approach (idle, deceleration, acceleration, and cruise) and for
the 14 mode V SP-based approach.

* The method worked for the V SP 56 mode approach for CO, for all four vehicle strata, but
success was more limited with the other three pollutants.

» Thefailuresto obtain solutions or to obtain sufficiently accurate solutions for HC, CO,
and NO with the 56-bin approach may be attributable to small sample sizes.

* Theanalysisof uncertainty in modal predictions for the 14 Mode V SP-based approach
clearly illustrates that the quality of the predictions are substantially better for CO, than
for the other pollutants.

» The standard deviation of prediction errors for a given mode for NO, HC, and CO based
upon the 14-mode V SP approach is typically of the same order of magnitude as the
observed mean emission rate, implying that the distribution of prediction errors are
positively skewed.

» The standard deviation of prediction errors for a given mode for CO, based upon the 14
mode V SP approach are approximately one third of the observed mean emission rate,
implying that the distribution of prediction errors are relatively symmetric.

* Therange of uncertainty in modal estimates obtained from aggregate bag data are
substantially larger than those obtained from second-by-second data

The key recommendations from this work are that the constrained least squares optimization
method can be effective at estimating modal emission rates from aggregate data as long as there
isasufficiently large sample size of data. The method worked well for the 14-mode V SP case
compared to the 4-mode NCSU case. Thus, the method appears capable of handling arelatively
large number of modes for a given dataset. The predictions are generally much better for CO,
than for the other pollutants. Thus, this technique works well for CO, even for casesin which
solutions could not be obtained for other pollutants. For future work, it may be worth exploring
other types of constraints than those addressed in this project. For example, the “strict
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constraints’ employed in thiswork allowed for considerable variability in the ratio of the
emission rate for a particular mode with respect to another mode. An even stricter constraint
would be to require that these ratios be defined for much narrower ranges or that some or all
combinations of ratios be point estimates. Of course, the more that constraints are imposed upon
the solution, the more critically dependent the solution becomes upon the accuracy of the
constraints themselves. If modal emission estimates are used in amodeling framework such as
moves, the uncertainty in those estimates must be incorporated as well, since the range of
uncertainty in modal emissions rates estimated from aggregate datawill typically be much larger
than that when estimated from second-by-second data.
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9 VALIDATION OF THE CONCEPTUAL MODEL

This report presents three validation studies in which a V SP-based binning approach was used to
estimate hot stabilized tailpipe emissions of CO,, CO, HC, and NO. The V SP-based approach is
based upon 1 second data in mass per time emission factor units.

The first case study includes the data utilized for model development and is only a consistency
check in response to comments received by EPA from the FACA committee. The second
validation case study is based upon comparisons of the model with EPA dynamometer, EPA on-
board, and NCHRP dynamometer data that were withheld from the modeling dataset. The third
validation case study is based upon an independent dataset from the California Air Resources
Board.

9.1 Validation Case Study 1

In this study, internal consistency of the modeling approach was evaluated by: (1) estimating
average modal emission rates for individual driving cycles using data only from the vehicles that
were tested on those cycles based upon data in the modeling database; and (2) making
predictions of average cycle emissions based upon the estimated modal emission rates. The
purpose of this comparison was to demonstrate that the modal emissions approach isinternally
consistent in disaggregating and re-aggregating the emission estimates for adriving cycle. For
this purpose, three driving cycles and on-board data were selected for analysis. The three cycles
were: ART-EF; FTP; and US06. These cycles were selected because there were ten or more
vehicles tested on these cyclesin the modeling database and these three cycles different ranges
of speeds, VSP, and emissions.

In Table 9-1, number of vehicles, number of trips and number of seconds of data associated with
each of the selected driving cycles are reported. Validation Dataset 1 includes more than 100
vehicles and 169,112 seconds of data. Key characteristics of the cycles utilized for Validation
Dataset 1 are given in Table 9-2, including average speed, maximum speed, minimum speed,
maximum acceleration, average V SP, and Maximum V SP. For the on-board data, for which
there was not a standard cycle, these statistics were cal culated based upon all of the available
datafor all vehiclesand trips. The average speeds for the cycles vary between 12 mph and 47
mph, with the lowest average speed associated with the ART-EF cycle and the highest average
speed associated with the US06 cycle. The average maximum acceleration among all the cycles
is approximately 6 mph/sec. Except for the FTP, al of the cycles have a maximum acceleration
greater than 6 mph/sec. Two cycles, ART-EF and FTP, have an average VSP less than 5
Kwi/ton, and two cycles, ART-EF and FTP, have maximum V SP |ess than 50 Kw/ton.

The predicted vehicle average total emissions and the observed vehicle average total emissions
for the three driving cycles and for the on-board measurements are shown graphically in Figure
9-1. The 95 percent confidence intervals for the means are also shown. Comparisons between
predicted and observed average total vehicle emissions are given in Tables 9-3 through 9-6 for
CO,, CO, HC, and NOy, respectively. These tables present average observed values for each
cycle with 95 percent confidence intervals, average predicted values for each cycle with 95
percent confidence intervals.
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Table9-1. Summary of Validation Dataset |

V ehicle Characteristics Cycle Number of vehicles | Number of seconds
ART-EF 12 6024
Engine Size < 3.5 liter JsTge gg féggf
<
Odometer < 50,000 On-Board 7 36096
ART-EF 0 0
Engine Size> 3.5 liter LIJ:sTgG i gfég
<
Odometer < 50,000 On-Board 6 35603
ART-EF 0 0
Engine Size< 3.5 liter JSTS’ 5 ﬁ 260051905
>
Odometer > 50,000 On-Board 0 0
ART-EF 0 0
Engine Size> 3.5 liter LIJ:sTgG j ;’jﬁﬁ
>
Odometer > 50,000 On-Board 0 0

Table 9-2. Key Characteristics of the Activity Pattern of the ART-EF, FTP75 and US06 Cycles
and of the On-Board Measurements Used in Validation Dataset I.

Average M ax Min M ax Mean M ax
Cycle Time | Speed Speed Speed Acceleration V'SP VSP
Name (9 (mph) (mph) (mph) (mph/sec) (Kwi/ton) | (Kwi/ton)
Art-EF 504 12 40 0 5.8 0.9 22.8
FTP75 1875 21 57 0 3.3 2.2 25.1
Us06 622 47 81 0 7.4 8.3 54.5
On-Board 1525 33 83 0 7.4 4.6 78.3
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Figure 9-1. Comparison of Observed and Predicted Average Total Emissions of CO,, CO, HC, and NO for Three Driving Cycles
and for On-Board Datafor Validation Dataset I.
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Table 9-3. Summary of Comparisons of Predicted versus Observed Vehicle Average Total

Emissions for Vaidation Dataset | for CO,

Mean Mean
Obs. 95 % Pred. 95 % Diff. # Cls
Cycles (9) Cl (9) Cl (%) Overlap
ART-EF 926 800 - 1000 926 900 — 950 0 Y
FTP75 2740 2500 - 2900 2740 2600 — 2900 0 Y
US06 2790 2600 - 3000 2790 2600 - 2900 0 Y
On-Board 16800 11200 - 22000 16800 12000 - 21000 0 Y

ZDiff: ((Predicted-Observed)/Observed)* 100

Table 9-4. Summary of Comparisons of Predicted versus Observed Vehicle Average Tota

Emissions for Validation Dataset | for CO

M ean M ean
Obs. 95 % Pred. 95 % Diff. # Cls
Cycles (9) Cl (9) Cl (%) Overlap
ART-EF 0.49 0.30-0.80 0.49 0.47-0.51 0 Y
FTP75 11 0.29-21 11 94-12 0 Y
US06 78 60 — 96 78 72 -84 0 Y
On-Board 120 60- 170 120 77 - 150 0 Y

2Diff: ((Predicted-Observed)/Observed)* 100

Table 9-5. Summary of Comparisons of Predicted versus Observed Vehicle Average Total

Emissions for Validation Dataset | for HC

Mean Mean
Obs. 95 % Pred. 95 % Diff. ® Cls
Cycles (9) Cl (9) Cl (%) Overlap
ART-EF 0.033 0.006 - 0.060 0.033 0.032 - 0.035 0 Y
FTP75 0.4 0.13-0.67 0.4 0.35-0.44 0 Y
Us06 0.83 0.55-1.1 0.83 0.66-1.0 0 Y
On-Board 11 6.4-15 11 8.0-14 0 Y

2 Diff: ((Predicted-Observed)/Observed)* 100

Table 9-6. Summary of Comparisons of Predicted versus Observed Vehicle Average Total

Emissions for Validation Dataset | for NOx

Mean M ean
Obs. 95 % Pred. 95 % Diff. # Cls
Cycles (9) Cl (9) Cl (%) Overlap
ART-EF 0.24 0.11-0.36 0.24 0.22-0.25 0 Y
FTP75 14 0.90-2.0 1.4 11-17 0 Y
US06 2.6 17-36 2.6 22-30 0 Y
On-Board 21 11-31 21 15-27 0 Y

2Djff: ((Predicted-Observed)/Observed)* 100
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The percentage difference in predicted and observed values is presented in Tables 9-3 through 9-
6. Anindication is given as to whether the confidence intervals for the predicted and observed
means overlap.

The average total emissions predictions from the model are exactly the same as the observed
valuesfor all the cycles and for the on-board data: in all cases the percentage difference between
the mean prediction and the mean observation is zero percent, and the confidence intervals for
the predicted and observed means overlap. The three cycles and the on-board data differ
substantially in terms of total average emissions. For example, the observed values for CO range
between 0.5 grams to 115 grams when comparing the ART-EF cycle and the on-board data,
respectively. Thus, the performance of the modeling approach is robust over a wide range of
different emissions estimates.

The main findings from Validation Case Study 1 are:

- Percent difference in the predicted versus observed values are al zero

- There was excellent agreement between the predicted and observed CO,, CO, HC, and NOy
emissions over awide range of emissions

- The methodology for disaggregating driving cycle or trip emissions into driving modes, and
re-aggregating the average modal emissions to make estimates of driving cycle or trip
emissions, is demonstrated to be internally consistent, asis expected.

9.2 Validation Case Study 2

For Validation Case Study 2, model predictions were prepared based upon average modal
emission rates calibrated to the modeling data set for all vehicles, al driving cycles, and al on-
board data. Model predictions were made for an independent data set of emissions for vehicles
that were not included in the modeling data set. The independent data set, referred to as
Validation Data Set 2, is summarized in Table 9-7. This data set is comprised of 81,808 seconds
of datafrom EPA dynamometer, EPA on-board measurement, and NCHRP dynamometer data.
The number of vehicles, number of trips and number of seconds of data associated with each
driving cycle are reported in the table. Validation Data Set 2 includes 78 vehicles, 83 trips, and
16 different cycles, including the on-board data as alumped category. It should be noted that the
number of vehicles tested on some cyclesisvery small. Specificaly, except for the FTP75 and
US06 cycles, three or fewer vehicles were tested. For validation purposes, comparisons were
made only for FTP75, US06 cycles, and On-Board data for which many vehicles and/or many
seconds of datawere available. Key characteristics of the cycles utilized for the Validation
Dataset Il are givenin Table 9-2. Key characteristics of vehiclesin this dataset are shown in
Appendix A.

The predicted and observed average total emissions for specific cycles, and the 95 percent
confidence intervals on the averages, are shown in Figure 9-2 for total emissions of CO,, CO,
HC, and NOy. The comparisons are summarized in Tables 9-8 through 9-11 for CO,, CO, HC,
and NOy emissions, respectively.
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Table 9-7. Summary of Driving Cycles, Number of Vehicles, Number of Trips, and Samples

Sizefor Vdidation Dataset 11

Data Source NO. of
Cycle Vehicles No. of Trips Total Seconds

EPA Dynamometer | ART-AB 2 2 1471
EPA Dynamometer | ART-CD 2 2 1255
EPA Dynamometer | ART-EF 3 3 1507
EPA Dynamometer | FWY-AC 2 2 1029
EPA Dynamometer | FWY-D 2 2 809
EPA Dynamometer | FWY-E 2 2 909
EPA Dynamometer | FWY-F 3 3 1321
EPA Dynamometer | FWY-G 2 2 777
EPA Dynamometer | FWY-HI 3 3 1825
EPA Dynamometer | LOCAL 2 2 1047
EPA Dynamometer | NONFWY 2 2 2693
EPA Dynamometer | NYCC 3 3 1795
EPA Dynamometer | Ramp 2 2 529
NCHRP FTP75 24 24 32950
NCHRP US06 21 21 12648
On-Board Data On-Board 3 18 19243
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Figure 9-2. Comparison of Observed and Predicted Average Total Emissions of CO,, CO, HC, and NOx for the FTP75 and US06
Driving Cycles and for On-Board M easurements for Validation Dataset 11.
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Table 9-8. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Vaidation Dataset 11 for CO,

Mean Mean
Obs. 95 % Pred. 95 % Diff. # Cls
Cycles (9) Cl (9) Cl (%) Overlap
FTP75 2563 2480 - 2645 3195 3164 - 3227 25 N
US06 2596 2505 - 2686 2491 2440 - 2542 -4 Y
On-Board | 17775 | 14367-21184 | 19612 | 16083 - 23142 10 Y
3 Diff: ((Predicted-Observed)/Observed)* 100

Table 9-9. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset |1 for CO

Mean Mean
Obs. 95 % Pred. 95 % Diff. ? Cls
Cycles (9) Cl (9) Cl (%) Overlap
FTP75 10.6 8.3-13.0 17.4 16.7 - 18.0 64 N
US06 75.1 67.7 - 82.5 34.9 32.2-375 -54 N
On-Board 328.4 161.0 - 495.8 199.8 162.7 - 236.9 -39 Y
3 Diff: ((Predicted-Observed)/Observed)* 100

Table 9-10. Summary of Comparisons of Predicted versus Observed Vehicle Average Totd
Emissions for Validation Dataset |1 for HC

Mean Mean
Obs. 95 % Pred. 95 % Diff. 2 Cls
Cycles (9) Cl (9) Cl (%) Overlap
FTP75 0.69 0.49 - 0.89 1.26 1.20-1.32 83 N
US06 0.93 0.80 - 1.06 1.08 1.02-1.13 16 Y
On-Board 13.17 7.49 - 18.85 9.40 7.02-11.78 -29 Y
2 Diff: ((Predicted-Observed)/Observed)* 100

Table9-11. Summary of Comparisons of Predicted versus Observed Vehicle Average Total
Emissions for Validation Dataset |1 for NOx

Mean M ean
Obs. 95 % Pred. 95 % Diff. 2 Cls
Cycles (9) Cl (9) Cl (%) Overlap
FTP75 2.06 1.61-251 2.33 2.24-242 13 Y
US06 253 2.09-2.97 2.93 2.78 - 3.07 16 Y
On-Board 16.60 11.57 - 21.62 21.05 16.46 - 25.65 27 Y
2 Diff: ((Predicted-Observed)/Observed)* 100
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As observed in Figure 9-2, the predicted average total CO, emissions are close to the observed
average total CO, emissions, especially for the US06 cycle and the on-board data. 1n these latter
two cases, the confidence intervals of the predicted and observed means overlap. The predicted
average CO, emissions are within 25 percent of the observed average values for the FTP75
cycle.

For CO, the qualitative trends of the model predictions are similar to that of the observed data, as
illustrated in Figure 9-2. For example, the on-board data had the highest observed total
emissions and also had the highest predicted total emissions. Both the observed and predicted
emissions decreased when comparing the FTP75 driving cycle to the US06 driving cycle.

Except for the FTP75 cycle, the model underpredicted the observed emissions. The
underprediction is suggestive of a different vehicle mix in Validation Data Set 2 versus the
modeling data set. Validation Data Set 2 contains a larger proportion of smaller engine sizes and
higher mileage than does the modeling data set. Nonetheless, the model predictions were not
statistically significantly different from the observed values for the on-board data, and were
comparable in magnitude to the data from the two driving cycles.

Qualitatively, the model predictions perform well compared to the observations for HC
emissions. Similar to the situation for CO emissions, the model appropriately predicts the
highest emissions for the on-board data, which have the highest observed emissions. The US06
and FTP75 cycles are predicted to have moderate emissions, comparable in magnitude to the
observed values. Furthermore, the predictions of the model were not statistically significantly
different from the observed emissions for the US06 driving cycle and for the on-board data.

For NOy, the model performed well for all three of the comparisons. In particular, the
confidence intervals of the model predictions overlapped with the confidence interval of the
observed emissions. Thus, the model predictions were not statistically significantly different
than the observed values. Therefore, the average error in the model prediction ranging from 13
to 27 percent among the three comparisons are not considered significant and are within the
random error of the data.

The overall findings of this case study are:

- Thereisgood concordance in the model predictions versus the observations in terms of the
ordinal ranking of which cycles have the highest and lowest emissions.

- Thepredictionsfor CO, HC, and NO tend to be better when the prediction for CO;, isaso
reasonably close. For example, the predictions for all three pollutants were very good for the
on-board data, and the predictions of two of the three pollutants were very good for the US06
cycle. The CO, predictions were generally very good for these three data sets. In contrast,
somewhat surprisingly, the predictions were generally not as good as expected for the FTP75
cycle, for which the CO, average prediction was also different from the average observed
value by 25 percent.

- A comparison of CO, predicted and observed values may be a good diagnostic tool for
identifying systematic differences between data sets. It appears that the Validation Data Set
2 ismore heavily weighted toward vehicles with smaller engines compared to the calibration
data set.

226



- The systematic differences observed here for CO, suggest that additional refinement may be
warranted for the engine displacement criteria when binning data. For example, rather than
grouping all engine displacements of less than 3.5 litersinto abin for agiven VSP, it may be
appropriate to further subdivide this bin into two or more subcategories.

9.3 Validation Case Study 3

Validation Dataset 111 includes California Air Resources Board (CARB) data provided by the
EPA. This dataset includes data from the following cycles: UCC17; UCC20; UCC25; UCC30;
UCC35; UCC40; UCCA45; OLD UCC50; UCC50; Modified Unified Cycle (MUC); and UCCGEO.
The data provided by EPA did not include second-by-second speed profiles for each test.
However, nominal speed profilesfor these cycles were provided. The nominal speed profiles
were used to determine the fraction of time that the vehicle was in each VSP mode. Table 9-12
summarizes Validation Dataset 111. A total of 17 vehicles were tested, over 164 tests, on 11
different cycles. However, the number of vehicles tested on some cycles was small. For example,
four or fewer vehicles were tested on the MUC, UCC50, and UCC60 cycles. For comparison
purposes, only cycles for which 10 or more vehicles were tested were utilized in this study.

Key characteristics of the cycles utilized for Validation Dataset |11 are given in Table 9-13.
Average speeds for the cycles ranges between 13 mph and 53 mph. The lowest average speed
occurred for the UCC17 cycle and the highest average speed occurred for the UCCG60 cycle. The
lowest maximum speed of 37 mph occurred for the UCC17 cycle and the highest maximum
speed of 81 mph occurred for the UCC60 cycle. Except for the Old UCC50 and UCC50 cycles,
al cycles have a maximum acceleration of less than 7 mph/sec. Seven of the 11 cycles have an
average VSP of lessthan 5 Kw/ton. The UCC35, Old UCC50, and UCCE0 cycles have a
maximum V SP greater than 50 Kw/ton.

Since engine displacement datawere not available for Validation Data Set 111, it was assumed
that all vehiclesin this dataset have engine displacement less than 3.5 liters based upon
discussion with EPA.

The average predicted and observed emissions, along with 95 percent confidence intervals are
shown in Figure 9-3 for all four pollutants. The comparisons are detailed in Tables 9-14 through
9-17 for CO,, CO, HC, and NO4 emissions, respectively. The predictions were made using the
average modal emission rates estimated from the modeling database.

For CO,, the average model predictions are close to the average observed values as indicated by
the fact that for six of the eight cycles for which comparisons were done, the means agreed to
within 10 percent. Furthermore, for seven of the cycles, the confidence intervals of the
predictions overlapped with the confidence intervals of the observations, and for all cyclesthe
mean predictions were within 15 percent. These findings imply strong agreement between the
model predictions and the observations. The model average predictions vary among the driving
cycles by afactor of approximately 8 for the largest to the smallest prediction compared to a
factor of approximately 10 for the average observations. The model appearsto slightly
overpredict for the lower emissions cycles.
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Table 9-12. Summary of Driving Cycles, Number of Vehicles, Number of Tests, and Sample

Sizefor Validation Dataset |1

Data Source No. of
Cycle Vehicles No. of Tests | Total Seconds
ARB data UCC17 17 17 7174
ARB data UCC20 17 17 15048
ARB data UCC25 17 17 15372
ARB data UCC30 17 17 17712
ARB data UCC35 17 17 24318
ARB data UCC40 17 17 24012
ARB data UCC45 17 17 23472
ARB data OLD UCC50 15 15 34663
ARB data MUC* 4 20 46760
ARB data UCC50 2 4 8768
ARB data UCC60 2 4 11240

* MUC: Modified Unified Cycle

Table 9-13. Key Characteristics of the Activity Patterns of the Driving Cyclesin Validation

Dataset 1.

Average | Max Min M ax Mean M ax

Time | Speed Speed | Speed | Acceleration | VSP V'SP
CyclelD | (9 (mph) (mph) | (mph) | (mph/sec) (Kw/ton) | (Kw/ton)
UCC17 422 13 37 0 4.6 1.4 22.3
UCC20 836 18 44 0 5.7 1.9 25.6
UCC25 854 23 50 0 5.9 2.5 23.1
UCC30 984 27 59 0 55 3.1 35.8
UCC35 1351 32 69 0 5.6 4.1 68.2
UCC40 1334 36 72 0 55 5.1 48.9
UCC45 1304 45 71 0 5.7 6.5 43.3

OoLD

UCC50 2039 48 76 0 8.1 7.8 86.5
MUC* 2338 17 67 0 6.9 2.1 35.1
UCC50 2192 43 72 0 7.5 6.3 28.1
UCC60 2810 53 81 0 6.4 9.2 57.2

* MUC: Modified Unified Cycle
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Figure 9-3. Comparison of Observed and Predicted Average Total Emissions of CO,, CO, HC, and NO for Eight UCC Driving
Cyclesfor Vaidation Dataset 111.
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Table 9-14. Summary of Comparisons of Predicted versus Observed Vehicle Average Tota
Emissions for Validation Dataset 111 for CO,

M ean M ean

Obs. 95 % Pred. 95 % Diff. @ Cls
Cydes | () cl (@) cl (%) | Overlap
UCC17 | 800 722 - 879 915 902 - 929 14 N
UCC20 | 1787 | 1632-1941 | 1975 | 1941- 2008 11 Y
UCC25 | 2050 | 1888-2211 | 2196 | 2155- 2237 7 Y
UCC30 | 2407 | 2220-2504 | 2617 | 2568- 2666 9 Y
UCC35 | 3690 | 3416-3963 | 3849 | 3771-3926 4 Y
UCCA0 | 4078 | 3799-4356 | 4084 | 3998- 4171 0 Y
UCCA5 | 4586 | 4257-4916 | 4439 | 4338- 4540 3 Y

OLD

UCCS0 | 7856 | 7235-8477 | 7252 | 7070- 7435 -8 Y

2Diff: ((Predicted-Observed)/Observed)* 100

Table 9-15. Summary of Comparisons of Predicted versus Observed Vehicle Average Tota
Emissionsfor Validation Dataset 111 for CO

Mean M ean

Obs. 95 % Pred. 95 % Diff. 2 Cls
Cycles (9) Cl (q) Cl (%) Overlap
UCC17 2.9 0.8-4.9 4.3 3.9-47 48 Y
UCC20 8.6 3.9-134 9.8 9.0-10.6 14 Y
UCC25 8.3 44-12.2 11.6 10.7-12.6 40 Y
UCC30 12.8 7.6-—18.0 15.5 14.4-16.6 21 Y
UCC35 24.3 11.9-36.8 25.1 23.6-26.5 3 Y
UCC40 | 31.2 18.1-44.4 29.0 27.4- 305 -7 Y
UCC45 29.5 16.9-42.1 34.4 32.9-359 17 Y

OoLD

UCC50 47.7 224-73.1 54.8 52.2-57.4 15 v

2 Diff: ((Predicted-Observed)/Observed)* 100
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Table 9-16. Summary of Comparisons of Predicted versus Observed Vehicle Average Tota
Emissions for Validation Dataset 111 for HC

Mean M ean

Obs. 95 % Pred. 95 % Diff. 2 Cls
Cycles (9) Cl (9) Cl (%) Overlap
UCC17 0.08 0.04-0.12 0.29 0.23-0.36 263 N
UCC20 0.20 0.12-0.29 0.62 0.48 - 0.76 210 N
UCC25 0.24 0.16 - 0.31 0.68 0.53-0.83 183 N
UCC30 0.34 0.24-0.44 0.81 0.63-0.99 138 N
UCC35 0.56 0.36- 0.76 1.20 0.94 - 1.46 114 N
UCC40 0.67 0.45 - 0.89 1.28 1.01-1.56 91 N
UCC45 0.71 0.49 - 0.93 1.40 1.10-1.69 97 N

OLD

UCC50 1.19 0.74 - 1.63 221 1.71-271 86 N

2 Diff: ((Predicted-Observed)/Observed)* 100

Table 9-17. Summary of Comparisons of Predicted versus Observed Vehicle Average Tota
Emissions for Validation Dataset 111 for NOx

M ean Mean

Obs. 95 % Pred. 95 % Diff. 2 Cls
Cycles (9) Cl (9) Cl (%) Overlap
UCC17 0.65 0.29- 1.00 0.59 0.53- 0.65 -9 Y
UCC20 1.25 0.54 - 1.96 1.36 1.22-1.50 9 Y
UCC25 157 0.70- 2.44 1.62 145-1.79 3 Y
UCC30 1.98 0.86-3.11 2.00 1.79-2.21 1 Y
UCC35 3.34 1.22-5.46 3.09 2.76 - 3.42 -7 Y
UCC40 4,67 1.34-8.00 3.46 3.10-3.82 -26 Y
UCC45 447 1.64-7.30 3.99 3.56-4.42 -11 Y

OLD

UCC50 9.41 6.7- 16 6.54 5.79-7.29 -30 Y

2 Diff: ((Predicted-Observed)/Observed)* 100
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For CO and NOy, the confidence intervals overlap for al eight of the driving cycles when
comparing predicted and observed averages. This suggests strong agreement between the model
and the observations for al of the cycles evaluated. The CO predictionstypically are larger than
the observed values and the prediction errors are as large as approximately 40 percent for the
lower emission cycles and not larger than approximately 20 percent for the higher emission
cycles. The observed CO emissions vary by afactor of 16 from the smallest to the largest
values, and the predicted CO emissions vary similarly by afactor of 13. For NOy, the prediction
errors were less than plus or minus 10 percent for five of the eight cycles, and were less than or
egual to plus or minus 30 percent for al cycles. The observed NO, emissions varied by a factor
of 15 from the smallest to the highest values, while the predictions varied similarly by afactor of
11.

For HC, the predictions were typically afactor of two to three larger than the observed values.
However, the qualitative trend of the predictions was similar to the observed values when
comparing cyclesin terms of rank ordering with respect to emissions. For example, the model
predicted the lowest emission rate for the UCC17 cycle and the highest emission rate for the Old
UCCH50 cycle, which is consistent with the observations.

There is some uncertainty regarding the regulations to which some of the vehiclesin the CARB
data set are subject. It is possible that some of the vehicles may be TLEV, rather than Tier 1,
vehicles, although specific information regarding this was not available with the dataset. TLEV
vehicles are subject to amore stringent HC emission standard but are otherwise the same as Tier
1 vehicles. The comparison suggests that the CARB vehicles have similar CO,, CO, and NOx
emissions but lower HC emissions when compared to the predictions made based upon modal
emissions rates estimated from the modeling data set. An analysis was done for two subsets of
the CARB database: (1) vehicles believed to be subject to Tier 1 standards; and (2) vehicles
believed to be subject to TLEV standards. It turned out that these two subgroups of vehicles did
not have any statistically significant difference in emissions with each other taking into account
all four pollutants and all eight driving cycles. Thus, to the extent that TLEV vehicles may be
present in the CARB database, the specific sample of TLEVswould not appear to have different
average emissions than the specific sample of Tier 1 vehicles. It ispossible, therefore, that the
predicted and observed HC emissions may differ for reasons other than emission standards, such
as perhaps because of different fuels. There was also uncertainty as to whether the HC emissions
reported in the CARB database were for total hydrocarbons or for non-methane hydrocarbons
(NMHC). The datawere used assuming that they represented total hydrocarbons. However, if
the HC datawere actually for NMHC, then it would be necessary to add the estimated methane
emissions in order to calculate the total observed hydrocarbons, in which case the comparison
would improve. Confirmation on this point could not be obtained during the time period of this
study.

The main findings from Validation Case Study 3 are:
- There was excellent agreement between the predicted and observed CO,, CO, and NOy
emissions.

- There appears to be excellent concordance between the predicted and observed HC
emissions.

232



9.4  Preiminary Exploration of Refinementsto the Modal Modeling Approach

Validation Case Study |1 indicated that there was some disagreement between the model
predictions and the observed values particularly for the FTP75 cycle. It was observed that the
validation data set tended to have vehicles with smaller engines than did the modeling dataset.
Therefore, arefinement to the modal modeling approach was explored in which the modeling
database was stratified into more engine displacement categories than was used in the “56-bin”
approach developed in Chapter 3. In addition, a second type of refinement was explored in
which an additional explanatory variable was sought for purposes of disaggregating each VSP
bin. Based upon an analysis of the sensitivity of the average emissionsinaVSP binto
acceleration and to average speed, asillustrated in Appendix A in Figure A-7, either of these two
variables was identified as potentially useful in further disaggregating the modeling database to
create additional bins. Speed was selected as the explanatory variable for further consideration
because speed is directly measured and because speed and acceleration are inversely related to
each other for most of the VSP bins, asillustrated by the scatter plots shown in Chapter 5in
Figures 5-10 and 5-11. Thus, thereislittle need to include both speed and acceleration as
additional explanatory variables.

In the case of refinement of the modal modeling approach based upon additional engine
displacement categories, three levels of engine displacement were used, rather than two asin the
original V SP-approach. These levels are: engine displacement less than 2.0 liter; engine
displacement greater than 2.0 liters and less than 3.5 liters; and engine displacement greater than
3.5 liter. In this approach, there are totally 84 bins, (2 odometer reading categories, 3 engine
displacement categories, and 14 VSP modes). The average modal emission rates for this “84-
bin” approach are given in Appendix A in Figures A-5 and A-6 for vehicle with odometer
reading less than 50,000 miles and for vehicles with odometer reading greater than 50,000 miles,
respectively. Using these average modal rates, predictions were made and compared to the
observed values for Validation Dataset |1. There was no significant improvement in the
predictions based upon the disaggregating of engine displacement into three instead of two
categories.

In the case of refinement of the modal modeling approach based upon speed, two levels of speed
were defined for each V SP mode based upon a selected cut point of 32 mph. The average
emission rates for each VSP mode for the low and high speed bins are shown in Appendix A in
Figures A-8 through A-11 for vehicles with the following characteristics, respectively: (1)
engine displacement less than 3.5 liters and odometer reading less than 50,000 miles; (2) engine
displacement greater than 3.5 liters and odometer reading less than 50,000 miles; (3) engine
displacement less than 3.5 liters and odometer reading greater than 50,000 miles; and (4) engine
displacement greater than 3.5 liters and odometer reading greater than 50,000 miles. For the
higher speed bins, the average emission rates tend to be higher in many cases, such asfor CO,
emissions for the lower V SP modes, for CO for most modes, for HC especially for the lowest

V SP modes, and for NOy for low to moderate VSP modes. The comparison of the average
modal emission rates for the two speed binsfor a given V SP mode suggests that there are
opportunities to refine the estimation of emission rates by considering speed as an additional
explanatory variable. A trade-off isthat the sample size of each bin becomes smaller, leading to
wider confidence intervalsin some cases. When the speed disaggregated V SP modes were used
to make predictions of cycle emissions for Validation Case Study 2, there was not a significant
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improvement in the prediction of total emissions compared to the predictions from the “56-bin”
approach. Thus, it may be the case that additional levels of detail at the micro scale may not lead
to substantial improvementsin predictions at the macro scale. However, itislikely that
disaggregation of V SP bins by speed will lead to more accurate predictions at the micro- or
mesoscale.

Of the two refinements to the modal modeling approach explored here, the refinement based
upon speed appears to offer promise for improving the accuracy of microscale or mesoscale
predictions, even though it may not help substantially in improving macroscal e predictions, at
least for the conditions evaluated in this study.

9.5 Summary and Recommendations
The main findings from all three verification and validation case studies are:

- The modal modeling approach isinternally consistent, as demonstrated by Validation Case
Study I. Specifically, it is possible to reproduce total trip emissions based upon proper
estimating and combination of average emissions for individual modes.

- Themodel generally performswell for the higher emission cycles and for cycles or
conditions that are represented by alarge portion of the data in the modeling data set.

- Themodel ishighly responsive, predicting awide range of variability in average emissions.

- Although the model tends to ove-rpredict for low emissions cycles, such cycles may be less
important from an inventory perspective than the high emissions cycles for which the model
performs better.

- Themodel performance for the low emissions cycles could be improved by working with
modeling datasets that have alarger representation of such cycles, or perhaps by refining the
modal definitions to better represent such cycles.

- A promising approach for refining the modal modeling method is to consider speed as an
additional explanatory variable.

- Comparisons of CO, emissions appear to be a good method for determine the comparability
of two datasets: in the case of the ARB data sets, there was excellent agreement for CO, and
this extended to the other pollutants. For Validation Data Set 2, there were systematic
differencesin CO, for one of the driving cycles for which comparisons were done that
appeared to extend to at least some of the other pollutants (e.g., CO, HC).

Overall, the results of the case studiesillustrate the flexibility and robustness of a modal-based
approach for making predictions for a wide variety of driving cycles and for on-board data.
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10 RECOMMENDATIONSFOR METHODOLOGY FOR MODAL MODEL
DEVELOPMENT

This report has explored in detail a number of key issues pertaining to the methodology for
developing amodal emissions model. The main focus of the case studies have been with respect
to hot stabilized tailpipe emissions from Tier 1 vehicles. However, when taking in the context of
recent previous work by NCSU to develop approaches for estimating cold start emissions for
gasoline vehicles, as well as modal emission rates for heavy duty diesel vehicles, this report
combined with the previous efforts clearly demonstrates the feasibility of a modal modeling
approach.

The key questions that were addressed in this work were the following:

1. What dataset should be used for the final version of the conceptual model? (Task 1a,
Chapter 2)

2. Which binning approach should be used? (Task 1b, Chapter 3)

3. How much detail should be included in the binning approach, in terms of how many
explanatory variables and how many stratafor each variable? (Task 1b, Chapter 3)

4. What averaging timeis preferred as abasis for model development? (Task 1b, Chapter 4)
5. What emission factor units should be used? (Task 1b, Chapter 5)

6. What weighting approach should be used, when comparing time-weighted, vehicle
weighted, and trip weighted? (Task 1b, Chapter 6)

7. How should variability and uncertainty be characterized? (Task 1c, Chapter 7)

8. How should aggregate bag data be analyzed to derive estimates of modal emission rates?
(Task 1d, Chapter 8)

9. What isthe potential role and feasibility of incorporating RSD data into the conceptual
modeling approach? (Task 1e, Chapter 5)

10. How should the conceptual model be validated and what are the results of validation
exercises? (Task 2, Chapter 9)

The answers to these questions are briefly summarized here, and are given in more detail in the
respective chapters devoted to each topic.

The data set used for the conceptual model was comprised of EPA dynamometer data, EPA on-
board data, and NCHRP dynamometer data. These data comprised the modeling database. The
modeling database was compared to several other databases, including an IM240 database and an
RSD database.
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The binning approach selected was a 14 mode V SP-based approach. However, it was shown that
an approach based upon driving modes of idle, acceleration, cruise, and deceleration produced
comparable predictions for total emissions. Thus, the 14 mode V SP-based approach is not
unique in its capability to predict emissions, but it is expected to facilitate design of a modeling
system perhaps moreso than the other approach.

There is atrade-off between improving the explanatory power of a model and having a model
that becomes complicated to code or use. Odometer reading and engine displacement were
identified as key explanatory variables. Engine displacement is highly correlated with vehicle
net weight and with the number of cylinders of the engine. Therefore, it is not necessary to
include net vehicle weight or number of cylindersif engine displacement is selected asan
explanatory variable. Odometer reading isweakly correlated with model year. This suggests
that there might be arole for model year in future model development. Because this study
focused upon Tier 1 vehicles, with much of the data spanning only avery limited range of model
years, it is possible that the influence of model year is understated with respect to thisanalysis
and that it may be more important for other types of vehicles. Ambient parameters such as
humidity were accounted for in correcting NOy emissions. Ambient temperature was not found
to be a significant explanatory variable. On the other hand, as discussed in Chapter 9, there may
be an opportunity to improve the explanatory power of the 14 mode V SP-based approach by
including either speed or acceleration as a criteriafor further disaggregating the bins.

The method for selecting the specific definitions of the 14 V SP bins took into account that each
pollutant has adifferent sensitivity to VSP. Thus, a“supervised” technique was used in which
the contribution of any individual mode to total emissions for a given pollutant was considered
asakey criteria. This approach produced one set of modal definitions that worked well for all
four pollutants.

An approach based upon “56 bins’ for which the 14 V SP modes were stratified into two
odometer reading categories and two engine displacement categories performed reasonably well
when predictions were compared to observations for independent data sets, as reported in
Chapter 9. The validation case studies thus emphasize that the modal emissions approach is
feasible. A key benefit of the conceptual modeling approach isthat it worksfor all four
pollutants considered, and it is not necessary to develop a separate approach for each pollutant.

Three averaging times were compared with respect to ability to make predictions of trip
emissions. No substantial difference was found. Thus, for smplicity, the one second averaging
time was recommended for model development and was employed in thiswork. However,
although the issue of averaging time may not have a significant effect on prediction of average
emissions, there is a significant effect on the prediction of uncertainty in average emissions. As
noted in Chapter 7, the range of uncertainty in the average modal emission ratesis a function of
averaging times, and the uncertainty estimates should be adjusted appropriately when making
predictions of uncertainty.

Three weighting approaches were compared, including time, trip, and vehicle weighted

approaches. Itisclear that the average emission estimates will differ depending on which
approach is used, because each approach gives a different amount of weight to different
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subgroups of the data. For example, the time weighted approach gives equa weight to each data
point. The trip weighted approach gives each trip (or driving cycle test) equal weight, even
though trip lengths may differ and even though some vehicles may be represented by many trips
and others may be represented by only one. The vehicle weighted approach gives each vehicle
equal weight regardless of the total testing time or number of trips (or tests). When comparing
time, trip, and vehicle weighted approaches, the standard deviation of the variability in emissions
decreases in the same order because each successive approach involves more averaging.
However, the averaging timeis not standardized for the trip and vehicle weighted approaches.
Because averaging time is important to accurate estimation of uncertainty, preference was given
in thiswork to the time weighted approach.

With regard to emission factor units, there was no clear overall advantage for emission ratios
versus mass per time emission factors for CO, HC, and NOy. Although it is the case that thereis
less variability in the averages among many of the modes for CO and HC for emission ratios
when compared to mass per time emission rates, for NOy there is substantial variability across all
modes regardless of the units used. For software design purposes, it is simpler to use the same
approach for al pollutants. Thus, an emission ratio approach would require a similar number of
modes as the mass per time approach. In thisregard, there was no clear advantage.

Additionally, it is necessary to estimate mass per time emissions of CO,, or to estimate mass per
time fuel consumption, in order to convert emission ratios for CO, HC, and NOy to mass
emission rates as would be required for an emission inventory model. Although an emission
ratio approach offers some benefits of simplicity when applied to an areawide macroscale
emission inventory based upon information such as fuel sales, an emission ratio approach
nonethel ess would require modal estimates of CO, emissions or fuel use when applied to
mesoscale emission inventories. Thus, for consistency in the modeling approach, the preferred
strategy was to use mass per time emission rates for all pollutants and to apply the same modal
emissions approach for all pollutants.

Considerable attention was devoted in this work to methods for characterizing variability in
emission rates for individual modes, uncertainty in average emissions for individual modes, and
uncertainty in total emissions estimated based upon weighted combinations of modes. The
recommendations regarding these issues are given in more detail in Chapter 7. In brief, the
feasibility of representing variability in modal emission rates with parametric distributions was
demonstrated. In some cases, single component parametric distributions cannot provide a good
fit, but in such cases a two component mixture of lognormal distributions provided an excellent
fit. The Method of Matching Moments is recommended as a preferred parameter estimation
method if the objective is to have the mean and standard deviation of the fitted distributions
match those of the data. For mixture distributions, MoMM is not considered afeasible
parameter estimation method and Maximum Likelihood Estimation is recommended. However,
the differences in results between MoMM and MLE become smaller as the goodness-of -fit
improves. Thus, awdll fitting mixture distribution will typically have a mean and standard
deviation similar to that of the data.

The analysis of uncertainty need not be conditioned upon the assumptions made regarding the

characterization of variability based upon parametric distributions. For example, uncertainty in
the mean can be estimated directly based upon the data using analytical or numerical methods. It
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is recommended that the sample size and the rel ative standard error of the mean of each bin
quantified. If the sample sizeislessthan 40 and/or if the relative standard error of the mean is
greater than 0.2, then bootstrap simulation is recommended as a technique for quantifying the
sampling distribution of the mean. In all other cases, a normality assumption will typically be
more than adequate. Parametric distributions can be fit to sampling distributions obtained from
bootstrap simulation. Thus, for all modes, it is possible to use parametric distributions to
represent uncertainty in the mean, which will facilitate software design and model applications.

Both numerical and analytical methods for propagating uncertainty through a model were
explored. Numerical methods such as Monte Carlo ssimulation or Latin Hypercube Sampling
offer the advantage of increased flexibility to accommodate many kinds of distributions and
models, including situations in which uncertainty is quantified not only for modal emission rates
but also for vehicle activity (e.g., percentage of time spent in different modes and trip duration).
In contrast, the analytical approach offers the advantage of |ess computational burden but is also
less flexible. An exact solution can be obtained for linear combinations of normal distributions,
such as when uncertainty in only modal emission rates is quantified and when al such
uncertainties are assumed to be normally distributed. Approximate analytical solutions can be
developed for other situations, such as when propagating uncertainty in both activity and
emission rates. If thislatter approach isto be further considered, the approach should be
evaluated quantitatively in comparison to a Monte Carlo approach to make sure that it will
produce sufficiently accurate results. If a Monte Carlo approach is adopted, consideration should
be given to also including an analytical approach for use as a quality assurance tool.

The range of uncertainty in total emissions estimates was large enough in many cases to justify
the importance of performing an uncertainty analysis. For example, for HC and CO emissions
the range of uncertainty was as large as plus or minus 30 percent for selected vehicle groups and
for four different driving cycles.

With respect to the issue of how to estimate modal emission rates from aggregate dynamometer
data (for which no second-by-second data are available), the results were mixed. It ispossible to
develop good modal emission estimates especially for CO, aslong as there is a sufficient sample
size and aslong as sufficient constraints are specified in the least squares optimization approach.
However, the range of uncertainty in the predicted modal emission rates can be much larger than
the uncertainty in modal emission rates obtained from second by second data. The resultsimply
that it isimportant to develop good estimates of the constraints; however, when applied to
vehicle groups for which there are no or few comparable second-by-second data, such as for
older carbureted vehicles, it may be difficult to develop good estimates of what the constraints
should be. An alternative approach isto arbitrarily specify more stringent constraints, such as
defining ratios to be multiples of each other, in which case the estimation problem becomes
simpler but the answers obtained will be highly conditional upon such constraints.

The most critical issue in the modal modeling approach is to have arepresentative data set. This
issue cannot be sidestepped regardless of the modeling approach employed. A representative
data set should have proportional representation of vehicle emission rates and activity patterns
similar to that in the real world. The development of such adatabaseis resource limited and
requires considerable judgment. In this particular work, the modeling database used for
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development and demonstration of the modal emissions concept was compared to other
databases, including IM 240 and remote sensing data. It appears to be the case that modeling
database produces lower emissions estimates for some modes and comparable emissions
estimates for others when compared to these other data sources. A possible reason for the
differences could be because of a different representation of high emitting versus normal
emitting vehicles. However, another reason that was explored is that the activity patterns of the
modeling database are generally different than those of the IM240 and RSD data. Thus, akey
guestion is not only whether the modeling database contains sufficient representation of high
emitting vehicles, but a'so whether the IM240 and RSD data contain adequate or appropriate
representation of real world activity patterns from which it is useful to make inferences regarding
emissions. The modeling database contained some high emitting vehicles, and it was apparent
that the upper range of emission rates for a given mode of the modeling database were typically
comparable to the upper range of emission rates from these other databases. Thus, the question
is not whether the modeling database represents high emitting vehicles and/or high emitting
episodes. Clearly, it does. The question iswhether it contains a sufficient proportional
representation of such situations. The evidence to support an answer to this question is
inconclusive given the different nature of the activity patterns for the IM240 and RSD databases
compared to that of the modeling database, as well as the possibility of other potential
confounding factors, such as fuel effects. From a methodological perspective, the main
implication of these comparisons in terms of future model development isto make sure that the
modeling database for future work is more comprehensive in terms of sample size and coverage
of vehicles considered to be both normal and high emitters.

Three approaches were taking toward validation of the conceptual modeling approach. The first
was to perform a consistency check, which demonstrated that the modal emission approach can
be applied to a dataset to disaggregate emissions into modes, and that it is possible to reaggregate
the model emissions and reproduce the total trip emissions. The second was to compare model
predictions to observed values for a set of vehicles similar to but not identical to those used in the
modeling data base. The comparison demonstrated that differencesin vehicle mix between the
modeling database and the validation database can |ead to differences when comparing predicted
and observed emissions. However, for cases in which the model and the observed values agreed
well for CO, emissions, they also tended to agree well for emissions of the other three pollutants.
In the future, it is worthwhile to perform similar validation studies by withholding data from the
modeling database for some of the trips made by a subset of vehicles, rather than to withhold
from the modeling database all data for a particular set of vehicles. Such an approach would
improve the likelihood that the vehicles in the validation data set are similar to those in the
modeling data set. The third validation case study involved prediction of emissions for an
independent set of vehicles based upon data provided by CARB. The comparison of predicted
and observed emissions was generally excellent for CO,, NOy, and CO for eight different driving
cycles. The model overpredicted for HC in all cases; however, it is possible that CARB may
have reported only nonmethane hydrocarbons instead of total hydrocarbons or that there was a
fuel effect. A potential distinction between Tier 1 and TLEV vehiclesin the CARB database
was explored. However, no significant difference in emissions was found for vehicles that might
be TLEV s versus those that were Tier 1; therefore, it was not useful to report results separately
for these two possible categories.
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A key criteriafor comparison when performing validation studies is to evaluate the statistical
significance of differences between predicted and observed emissions. Emissions for individual
vehicles can vary by orders of magnitude even for the same driving cycle; therefore,
comparisons based upon a small number of vehicles will typically have wide confidence
intervals for the mean and will be less reliable than those based upon alarger set of vehicles.
Since the objective of an emission inventory model isto make accurate predictions for afleet of
vehicles, it isimportant to have a quantitative understanding of the level of uncertainty
associated with mean predictions of the model, as has been demonstrated in this work.

In conclusion, thiswork has demonstrated the feasibility of an empirically-based method for

modal emissions model. The methods demonstrated in this work can and should be incorporated
or adapted for use in the development of MOV ES and other emission estimation systems.
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Figure A-6. Average Modal Emission Rates for Vehicles with Odometer Readings Greater than 50,000 miles Based Upon V SP Bins
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Figure A-8. Average Modal Emission Rates for VSP Bins for Engine Displacement < 3.5 liter and Odometer Reading < 50K miles
for Two Different Speed Strata
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Figure A-9. Average Modal Emission Rates for VSP Bins for Engine Displacement > 3.5 liter and Odometer Reading < 50K miles
for Two Different Speed Strata
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Figure A-10. Average Modal Emission Rates for VSP Bins for Engine Displacement < 3.5 liter and Odometer Reading > 50K miles
for Two Different Speed Strata
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Figure A-11. Average Modal Emission Rates for VSP Bins for Engine Displacement > 3.5 liter and Odometer Reading > 50K miles
for Two Different Speed Strata
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Table A-1. Correlation Among Parameters

Net Number of Engine Model
Parameter Weight | Odometer | Cylinders Displacement Y ear
Net Weight 1 0.35 0.76 0.78 0.00
Odometer 1 0.18 0.10 0.47
Number of
Cylinders 1 0.93 0.01
Engine
Displacement 1 -0.02
Model Y ear 1
Table A-2. Summary of Vehiclesin Validation Dataset «
Net Engine Odomet
Source Vehicle | Year Weight Size er

EPA 1 1997 2826 2 15806

EPA 2 1997 3553 3 58197

EPA 3 1996 3633 3 10102

EPA 4 1997 3650 3.1 22549

EPA 5 1996 2966 2.2 68768

EPA 6 1997 3223 25 17312

EPA 7 1996 3669 3.1 22000

EPA 8 1996 3279 3.1 23894

EPA 9 1996 3500 2.2 7573

EPA 10 1999 3538 3 19208

EPA 11 1996 3627 3.1 24798

EPA 12 1997 3699 3 12328

EPA 13 1996 2283 1.3 76931

EPA 14 1996 3625 3.1 17233

EPA 15 1997 3598 3.1 15248

EPA 16 1998 4216 4.6 19177

EPA 17 1998 4250 6.2 5098

EPA 18 1996 3625 3 18992

EPA 19 1998 3628 3.1 4983

EPA 20 1999 2827 1.6 10674

EPA 21 1999 2849 1.8 23800

EPA 22 1996 3338 N/A 30418

EPA 23 1997 2826 N/A 15768

EPA 24 1996 3633 N/A 9997

EPA 25 1997 3650 N/A 22093

EPA 26 1997 3223 N/A 17207

EPA 27 1996 3669 N/A 21951

(Continued on next page)
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Table A-2. (Continued).

Net Engine Odomet
Source Vehicle | Year Weight Size er
EPA 28 1996 3279 N/A 23799
EPA 29 1996 3627 N/A 24708
EPA 30 1997 3699 N/A 1220
EPA 31 1997 3598 6 15182
EPA 32 1998 4250 8 5038
EPA 33 1998 3628 6 4829
NCHRP 1 1995 2250 15 23249
NCHRP 2 1996 4000 4.6 13287
NCHRP 3 1996 3500 3.8 22607
NCHRP 4 1995 3750 4 50541
NCHRP 5 1995 2250 1.6 49814
NCHRP 6 1995 2250 15 43708
NCHRP 7 1995 3000 2 21468
NCHRP 8 1996 3000 2 15096
NCHRP 9 1994 4250 4.3 43625
NCHRP 10 1994 2750 1.8 27339
NCHRP 11 1996 4000 4.6 16390
NCHRP 12 1996 2500 2 5312
NCHRP 13 1995 3500 3.8 28905
NCHRP 14 1996 2625 1.9 18000
NCHRP 15 1994 3000 3 49492
NCHRP 16 1995 2750 1.6 35291
NCHRP 17 1996 2625 1.9 7107
NCHRP 18 1996 2875 2.2 5690
NCHRP 19 1995 3500 2.2 29209
NCHRP 20 1996 3625 3.8 25877
NCHRP 21 1995 3375 3 22197
NCHRP 22 1995 3250 2.2 37194
NCHRP 23 1996 2875 1.9 13719
NCHRP 24 1996 3250 2.4 14212
NCHRP 25 1996 2875 1.8 4280
NCHRP 26 1995 2375 1.5 56213
NCHRP 27 1994 3500 2.2 56197
NCHRP 28 1993 2625 1.9 63125
NCHRP 29 1994 3000 2.5 56338
NCHRP 30 1996 2750 1.6 13845
NCHRP 31 1994 3250 2.2 57192
NCHRP 32 1997 2750 2 370
NCHRP 33 1994 4000 4.6 58923
NCHRP 34 1994 3875 3.8 54825
NCHRP 35 1996 2875 1.8 29480

(Continued on next page)
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Table A-2. (Continued).

Net Engine Odomet
Source Vehicle | Year Weight Size er
NCHRP 36 1995 4000 3 51286
NCHRP 37 1995 2750 1.6 54843
NCHRP 38 1994 3125 2.5 56936
NCHRP 39 1993 2625 1.9 150139
NCHRP 40 1993 3250 2.2 72804
NCHRP 41 1995 3000 2.2 20606
NCHRP 42 1994 2875 2.5 72483
NCHRP 43 1994 4500 4.3 78060
NCHRP 44 1995 3625 3 63558
NCHRP 45 1994 2750 1.8 28630
NCHRP 46 1996 3250 2 105430
NCHRP 47 1998 2875 2.2 100250
NCHRP 48 1994 4000 3 100160
NCHRP 49 1998 3375 2.2 13247
On-Board 1 1998 3550 3.1 44362
On-Board 2 1997 3508 3 79984
On-Board 3 1996 3464 3 96099
On-Board 4 1996 3464 2.5 96099
On-Board 5 1998 2553 1.9 37278
On-Board 6 1999 3068 3.1 26288
On-Board 7 1999 2392 1.9 43242
On-Board 8 1999 2515 2 39429
On-Board 9 1997 3318 2 71446
On-Board 10 1998 2548 3 47439
On-Board 11 1998 2548 3 47439
On-Board 12 1996 2935 2.2 86999
On-Board 13 1996 3508 3 94321
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Table A-3. Summary of Vehiclesin Validation Dataset «

Engine Odomet
DATA Vehicle Year GVWR Size er
EPA 1 1996 4036 2.4 30669
EPA 2 1996 N/A 3.1 21219
EPA 3 1996 N/A 1.6 9433
NCHRP 1 1996 3500 3.8 22651
NCHRP 2 1996 2625 1.6 20975
NCHRP 3 1997 3625 3 3415
NCHRP 4 1994 3625 3 22258
NCHRP 5 1995 2375 1.5 52111
NCHRP 6 1994 2625 1.5 78056
NCHRP 7 1994 2375 1.5 57742
NCHRP 8 1995 3625 3.3 62007
NCHRP 9 1994 3000 2.5 57407
NCHRP 10 1994 3875 3.8 72691
NCHRP 11 1993 2625 1.6 61032
NCHRP 12 1994 2625 1.9 64967
NCHRP 13 1996 2000 1 32034
NCHRP 14 1993 3500 2.2 97869
NCHRP 15 1994 3500 2.5 61040
NCHRP 16 1994 3250 3.1 80877
NCHRP 17 1993 2750 1.8 102240
NCHRP 18 1994 2625 1.5 91045
NCHRP 19 1997 2625 1.6 6172
NCHRP 20 1997 3375 3.1 3015
NCHRP 21 1997 3250 2 23099
NCHRP 22 1995 2625 1.9 104890
NCHRP 23 1996 2625 1.9 111203
NCHRP 24 1999 2875 3.1 100250
NCHRP 25 1995 2875 2.5 100250
On-Board 1 1998 4721 3 78187
On-Board 2 1998 N/A 2.2 56803
On-Board 3 1998 5166 2 41319
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Table A-3. Summary of Vehiclesin Validation Dataset ¢l

Net
DATA Vehicle | Year weight Odometer
ARB 2 1994 3500 65294
ARB 5 1997 3250 23503
ARB 24 1995 2750 12698
ARB 33 1996 3375 28454
ARB 36 1993 3250 52196
ARB 41 1995 2250 6181
ARB 49 1993 3500 40626
ARB 59 1993 3250 47368
ARB 77 1993 3125 37353
ARB 79 1994 2875 23730
ARB 84 1995 3125 3188
ARB 187 1994 4000 88592
ARB 216 1993 3375 90080
ARB 258 1995 2750 32015
ARB 315 1993 4000 66932
ARB 341 1995 3500 49437
ARB 342 1995 2750 14904
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Table A-4. Comparison of Mean Emissions of VSP Bins, Time-Average vs. Trip-Average vs. Vehicle-Average

NO® HC" CO? co’
Bind Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg
Avg Avg Avg Avg
mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.

1101 | 0.000901 | 0.001097 22 | 0.000852 -6 | 0.00045 | 0.000391 | -13 | 0.00034 | -24 | 1.671078 | 2.092668 25 | 1.780418 7 | 0.007807 | 0.010418 33 | 0.009971 28

1102 | 0.000628 | 0.001017 62 | 0.000727 16 | 0.000257 | 0.000387 51 | 0.000337 31 | 1.457983 | 2.020811 39 | 1.70965 17 | 0.003908 | 0.007937 | 103 | 0.007968 | 104

1103 | 0.000346 | 0.000742 | 114 | 0.000411 19 | 0.000406 | 0.00035 | -14 | 0.000274 | -33 | 1.135362 | 1.667869 47 | 1.332954 17 | 0.003347 | 0.005155 54 | 0.004262 27

1104 | 0.001173 | 0.001389 18 | 0.001039 | -11 | 0.000432 | 0.000528 22 | 0.000429 -1 | 2.233264 | 2.552053 14 | 2.338717 5| 0.008335 | 0.01246 49 | 0.010144 22

1105 | 0.001706 | 0.001684 -1 | 0.00141 | -17 | 0.00053 | 0.000572 8 | 0.000515 -3 | 291989 | 298235 2 | 2931022 0 | 0.010959 | 0.013319 22 | 0.014101 29

1106 | 0.002368 | 0.002066 | -13 | 0.00198 | -16 | 0.000705 | 0.00065 -8 | 0.000666 -6 | 3.525303 | 3.327366 -6 | 3.502494 -1 | 0.017013 | 0.014941 | -12 | 0.021879 29

1107 | 0.003103 | 0.002466 | -21 | 0.002489 | -20 | 0.000822 | 0.00077 -6 | 0.000804 -2 | 4107483 | 3.739047 -9 | 4.054487 -1 | 0.020026 | 0.017961 | -10 | 0.030889 54

1108 | 0.004234 | 0.003103 | -27 | 0.003235 | -24 | 0.000976 | 0.000813 | -17 | 0.000946 -3 | 4.635048 | 4.121626 | -11 | 4.52942 -2 | 0.029222 | 0.022877 | -22 | 0.046249 58

1109 | 0.005069 | 0.004166 | -18 | 0.004544 | -10 | 0.001112 | 0.000871 | -22 | 0.001097 -1 | 5160731 | 4.606298 | -11 | 5152217 0 | 0.035531 | 0.027536 | -23 | 0.059231 67

1110 | 0.005865 | 0.004178 | -29 | 0.004414 | -25 | 0.001443 | 0.001096 | -24 | 0.00133 -8 | 5.632545 | 4.858016 | -14 | 5.440037 -3 | 0.055068 | 0.03832 | -30 | 0.086515 57

1111 | 0.007623 | 0.004979 | -35 | 0.005441 | -29 | 0.002061 | 0.001673 | -19 0.0019 -8 | 653478 | 5798515 | -11 | 6.266617 -4 | 0.113824 | 0.08035 | -29 | 0.175599 54

1112 | 0.012149 | 0.009459 | -22 | 0.009449 | -22 | 0.003373 | 0.003284 -3 | 0.002607 | -23 | 7.585213 | 7.097114 -6 | 7.671417 1| 0.207586 | 0.169395 | -18 | 0.253183 22

1113 | 0.015456 | 0.010298 | -33 | 0.010679 | -31 | 0.004857 | 0.005374 11 | 0.004349 | -10 | 9.024217 | 8.439456 -6 | 9.319705 3 | 0.441775 | 0.386715 | -12 | 0.530003 20
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Table A-4. Continued

NO HCP CO? co’

Bind Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Avg Avg Avg Avg

mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.
1114 | 0.017863 | 0.015276 | -14 | 0.018635 4 | 0.010948 | 0.005063 | -54 | 0.005851 | -47 | 10.08839 | 8.611693 | -15 | 9.917922 -2 0.8823 | 0574791 | -35 | 0.820496 -7
1201 | 0.00029 | 0.000571 97 | 0.000767 | 165 | 0.000548 | 0.001243 | 127 | 0.000619 13 | 1.566819 | 1.742827 11 | 1.76866 13 | 0.017699 | 0.03866 | 118 | 0.019879 12
1202 | 0.000223 | 0.000526 | 136 | 0.000747 | 235 | 0.000222 | 0.001518 | 583 | 0.000704 | 217 | 1.443564 | 1.883233 30 | 1.812724 26 | 0.008608 | 0.055898 | 549 | 0.025235 | 193
1203 | 0.000174 | 0.000571 | 227 | 0.000899 | 415 | 0.000272 | 0.001165 | 329 | 0.000395 46 | 1470553 | 1.778044 | 21 | 1.767513 20 | 0.008479 | 0.034922 | 312 | 0.011575 37
1204 | 0.000719 | 0.000938 30 | 0.001112 55 | 0.000472 | 0.001411 | 199 | 0.000649 38 | 2611318 | 2.93208 12 | 2.769411 6 | 0.014548 | 0.04941 | 240 | 0.019972 37
1205 | 0.001136 | 0.001304 15 | 0.00152 34 | 0.000754 | 0.001704 | 126 | 0.000799 6 | 3.523681 | 3.620842 3 | 3.558054 1| 0.025709 | 0.072916 | 184 | 0.026876 5
1206 | 0.001587 | 0.001657 4 | 0.001932 22 | 0.000702 | 0.001412 | 101 | 0.000809 15 | 4.650741 | 4.399458 -5 | 4.452864 -4 | 0.025212 | 0.047817 90 | 0.026926 7
1207 | 0.00237 | 0.002194 -7 | 0.002551 8 | 0.000944 | 0.001489 58 | 0.000939 0 | 5.635386 | 5.248342 -7 | 5.270724 -6 | 0.04113 | 0.059382 | 44 | 0.041535 1
1208 | 0.004098 | 0.002927 | -29 | 0.00348 | -15 | 0.001443 | 0.001799 25 | 0.001299 | -10 | 6.599677 | 6.16888 -7 | 6.252616 -5 | 0.076601 | 0.070431 -8 | 0.060221 | -21
1209 | 0.006124 | 0.004377 | -29 | 0.005834 -5 | 0.001708 | 0.002151 26 | 0.001614 -5 | 7.647334 | 7.075418 -7 | 7.38033 -3 | 0.129248 | 0.103004 | -20 | 0.103436 | -20
1210 | 0.007313 | 0.00506 | -31 | 0.006455 | -12 | 0.002605 | 0.002985 15 | 0.002385 -8 | 8.808448 | 8.096559 -8 | 8.042326 -9 | 0.150578 | 0.122169 | -19 | 0.123995 | -18
1211 | 0.013178 | 0.00802 | -39 | 0.011761 | -11 | 0.003523 | 0.003469 -2 | 0.003386 -4 | 11.67061 | 9.372073 | -20 | 9.594158 | -18 | 0.355223 | 0.168599 | -53 | 0.220936 | -38
1212 | 0.012663 | 0.018412 45 | 0.018412 45 | 0.007653 | 0.005327 | -30 | 0.005327 | -30 | 14.52036 | 14.8929 3| 14.8929 3| 0.881642 | 0.546928 | -38 | 0.546928 | -38
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Table A-4. Continued

NO HCP CO? co’

Bind Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Avg Avg Avg Avg

mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.
1213 | 0.015387 | 0.020783 35 | 0.020783 35 | 0.006667 | 0.005828 | -13 | 0.005828 | -13 | 15.65327 | 15.30436 -2 | 15.30436 -2 | 0.755155 | 0.722783 -4 | 0.722783 -4
1214 | 0.020308 | 0.041798 | 106 | 0.041798 | 106 | 0.006574 | 0.006035 -8 | 0.006035 -8 | 17.36653 | 17.66742 2 | 17.66742 2 | 0.904851 | 0.909832 1 | 0.909832 1
2101 | 0.001014 | 0.001018 0 | 0.000965 -5 | 0.000901 | 0.000926 3 | 0.000607 | -33 | 1.543686 | 1.395048 | -10 | 1.330709 | -14 | 0.01103 | 0.014076 28 | 0.011779 7
2102 | 0.001042 | 0.001243 19 | 0.001088 4 | 0.000901 | 0.000833 -8 | 0.000545 | -40 | 1.604406 | 1.656132 3 | 1547675 -4 | 0.008723 | 0.013194 51 | 0.009119 5
2103 | 0.000423 | 0.000793 87 | 0.000858 | 103 | 0.000835 | 0.000705 | -16 | 0.000486 | -42 | 1.130833 | 1.266896 12 | 1.270197 12 | 0.004682 | 0.007685 64 | 0.006283 34
2104 | 0.001613 | 0.002034 26 | 0.001561 -3 | 0.001027 | 0.001237 20 | 0.000757 | -26 | 2.38626 | 2.640064 11 | 2.361957 -1 | 0.012154 | 0.021867 80 | 0.013167 8
2105 | 0.002638 | 0.002791 6 | 0.002287 | -13 | 0.001253 | 0.001192 -5 | 0.000865 | -31 | 3.210249 | 3.366473 5| 310974 -3 | 0.016731 | 0.025063 50 | 0.016411 -2
2106 | 0.003793 | 0.003603 -5 | 0.003145 | -17 | 0.001664 | 0.00134 | -19 | 0.000994 | -40 | 3.957732 | 3.973958 0| 383721 -3 | 0.023269 | 0.024633 6 | 002069 | -11
2107 | 0.005098 | 0.004579 | -10 | 0.003967 | -22 | 0.002089 | 0.001472 | -30 | 0.001134 | -46 | 4.752012 | 4.620807 -3 | 4.583745 -4 | 0.029322 | 0.027876 -5 | 0.027406 -7
2108 | 0.006373 | 0.005964 -6 | 0.005095 | -20 | 0.002332 | 0.001585 | -32 | 0.001232 | -47 | 5.374221 | 5.332288 -1 | 5.321404 -1 | 0.036942 | 0.033271 | -10 | 0.034868 -6
2109 | 0.007664 | 0.007039 -8 | 0.006184 | -19 | 0.002818 | 0.002136 | -24 | 0.001654 | -41 | 5.940051 | 5.905244 -1 | 6.043941 2 | 0.049513 | 0.046846 -5 | 0.053282 8
2110 | 0.009913 | 0.01015 2| 000841 | -15 | 0.002985 | 0.002352 | -21 | 0.001781 | -40 | 6.427506 | 6.722447 5 | 6.755205 5 | 0.063759 | 0.060781 -5 | 0.071075 11
2111 | 0.012685 | 0.013099 3 | 0.012178 -4 | 0.003786 | 0.00317 | -16 | 0.002651 | -30 | 7.065985 | 7.632773 8 | 7.972946 13 | 0.10538 | 0.10403 -1 | 0.139503 32
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Table A-4. Continued

NO HCP CO? co’

Bind Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Avg Avg Avg Avg

mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.
2112 | 0.014384 | 0.014329 0| 0.01417 -1 | 0.004573 | 0.005006 9 | 0.004808 5 | 7.617703 | 8.2016%4 8 | 8.694089 14 | 0.24781 | 0.367169 | 48 | 0504717 | 104
2113 | 0.015967 | 0.01535 -4 | 0.015462 -3 0.0057 | 0.006377 12 | 0.006267 10 | 8.322442 | 8.290563 0 | 9.310727 12 | 0413069 | 0.63355 53 | 0.884127 | 114
2114 | 0.016717 | 0.015747 -6 | 0.013914 | -17 | 0.007164 | 0.009796 37 | 0.009379 31 | 8475028 | 8.780078 4 | 9.856257 16 | 0.624663 | 1.067502 71 | 149599 | 139
2201 | 0.000725 | 0.00082 13 | 0.000717 -1 | 0.000863 | 0.001075 25 | 0.000857 -1 | 1.649427 | 1.666261 1| 1.637489 -1 | 0.020282 | 0.026335 30 | 0.020063 -1
2202 | 0.000504 | 0.000937 86 | 0.000607 20 0.0003 | 0.000739 | 146 | 0.000388 29 | 1.762407 | 1.971398 12 | 1.729282 -2 | 0.008183 | 0.031627 | 286 | 0.009787 20
2203 | 0.000661 | 0.000812 23 | 0.000619 -6 | 0.000323 | 0.000571 77 | 0.000298 -8 | 1557773 | 1.688165 8 | 1.594651 2| 0.00483 | 0.014518 | 201 | 0.004375 -9
2204 | 0.002518 | 0.003287 31| 0.00248 -1 | 0.000449 | 0.000851 90 | 0.000444 -1 | 2.946419 | 3.503549 19 | 2.950934 0 | 0.012308 | 0.044087 | 258 | 0.012215 -1
2205 | 0.005847 | 0.005724 -2 | 0.005791 -1 | 0.000818 0.0015 84 | 0.000816 0 | 4127492 | 4.476632 8 | 4.105545 -1 | 0.022033 | 0.045654 | 107 | 0.021965 0
2206 | 0.008361 | 0.008287 -1 | 0.008562 2 | 0.001216 | 0.001476 21 | 0.001255 3 | 5.343656 | 5.461154 2 | 5.347669 0 | 0.045073 | 0.059244 | 31 | 0.046499 3
2207 | 0.010582 | 0.010992 4 | 0.010822 2| 0.00211 | 0.002053 -3 | 0.002082 -1 | 6.507179 | 6.480357 0 | 6.513549 0 | 0.077496 | 0.074036 -4 | 0.077436 0
2208 | 0.014473 | 0.015513 7 | 0.014517 0 | 0.004394 | 0.003571 | -19 | 0.004342 -1 | 7.602431 | 7.642446 1| 7.693818 1| 0.166593 | 0.130573 | -22 | 0.165597 -1
2209 | 0.016372 | 0.017328 6 | 0.015037 -8 | 0.004635 | 0.003484 | -25 | 0.004221 -9 | 8.773093 | 8.827697 1 | 8.848806 1| 0.170018 | 0.113574 | -33 | 0.158411 -7
2210 | 0.019758 | 0.022928 16 | 0.019472 -1 | 0.004961 | 0.004306 | -13 | 0.005332 7 | 10.36591 | 10.29987 -1 | 10.33755 0 | 0.263544 | 0.17931 | -32 | 0.271669 3

263




Table A-4. Continued

NO HCP CO? co’

Bind Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Avg Avg Avg Avg

mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff. | mean mean diff. | mean diff.
2211 | 0.030507 | 0.036289 19 | 0.03191 5 | 0.006631 | 0.006477 -2 | 0.006673 1 | 12.84939 | 12.53602 -2 | 12.83404 0 | 0.338962 | 0.23947 | -29 | 0.341425 1
2212 | 0.034219 | 0.049097 43 | 0.037247 9 0.0109 | 0.013702 26 | 0.011512 6 | 15.0303 | 14.74582 -2 | 15.13418 1| 0.824829 | 0.82406 0 | 0.877657 6
2213 | 0.043387 0.0485 12 0.0485 12 | 0.016573 | 0.016142 -3 | 0.016142 -3 | 16.86173 | 16.96438 1 | 16.96438 1| 1444311 | 1.306457 | -10 | 1.306457 | -10
2214 | 0.068988 | 0.054347 | -21 | 0.054347 | -21 | 0.027066 | 0.020961 | -23 | 0.020961 | -23 | 18.94712 | 18.76208 -1 | 18.76208 -1 | 2175099 | 1917319 | -12 | 1917319 | -12

4 First two digit of VSP Bins: 11: odometer < 50,000 miles and engine size < 3.5 liter; 12: odometer < 50,000 miles and engine size > 3.5
liter; 21: odometer > 50,000 miles and engine size < 3.5 liter; 22: odometer > 50,000 miles and engine size > 3.5 liter.
P Unit of mean: g/sec; Unit of diff.: %.
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Table A-5. Comparison of Standard Deviations of Variability in Original Emission Data Sets of VSP Bins, Time-Average vs. Trip-

Average vs. Vehicle-Average
NOP HCP CcoP coP
. a Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Bin Avg Avg Avg Avg

S| sdde | M| sddev. | M| s dev. | sdder. | 9| s dev. | | s dev. | s dev. | M| sdder. | U] s dev. | s dev. | 9| st dev. | 41
HOL | 0009 | goo611 | 45 | 0.000963 | -67 | 0002831 | 0.000566 | -80 | 00005 | -82 | 1385471 | 112253 | -19 | 0935668 | 32 | 0058918 | 0021028 | 64 | 0.014674 | -75
10z | 00025 | gooiss7 | 38 | 0000811 | -68 | 0001123 | 0.000774 | -31 | 0000587 | -48 | 1212863 | 1132493 | -7 | 0.866006 | 20 | 0036678 | 0019927 | -46 | 0.018202 | -50
1103 0'°f§5 0001962 | 27 | 0000375 | 76 | 0.001502 | 0.000801 | -47 | 0.000534 | -64 | 0.816426 | 1130622 | 38 | 061943 | -24 | 0021594 | 0.012754 | -41 | 0010782 | -50
1ot | 0094 | 00076 | 49 | 0000878 | 74 | 0001414 | 0.000919 | -35 | 0000777 | -45 | 1384324 | 0955028 | -31 | 0767325 | -45 | 0.051944 | 0.028064 | -46 | 0.026506 | -49
1O | 0004 | 0001099 | -55 | 0001167 | 74 | 0001509 | 0.001047 | -35 | 0000917 | -43 | 1529625 | 0894469 | -42 | 0709841 | -54 | 0.006842 | 003279 | -6 | 0031709 | 67
106 | 009 | 000236 | -58 | 0001735 | -69 | 000237 | 000L6 | 51 | 0001224 | 48 | 1667104 | 0902644 | 46 | 0775061 | -53 | 0.154603 | 0.036387 | 76 | 0.049995 | -68
HOT | 00%7 | ooo2s11 | 58 | 000242 | -64 | 0002401 | 0001414 | -41 | 0001481 | -38 | 177441 | 11272 | -3 | 0899522 | -49 | 0106224 | 0048509 | 54 | 0.073973 | -30
108 | 0009 | 0ooss20 | 56 | 0003204 | -59 | 0002812 | 0.001523 | 46 | 0001687 | -40 | 1938311 | 1328727 | -32 | 1138721 | -41 | 015224 | 0077492 | -49 | 0115758 | 24
109 | 000 | 0005206 | 47 | 0005013 | -50 | 0002673 | 0.001854 | -31 | 0001912 | -28 | 2088216 | 1508800 | -23 | 1322302 | 37 | 0165469 | 009141 | -45 | 0150854 | -9
1o 0'%1109 0005133 | -53 | 0004874 | -56 | 0.003685 | 0002444 | -34 | 0002394 | -35 | 235424 | 2112815 | -10 | 1874281 | -20 | 0251833 | 011994 | -52 | 0.191922 | -24
HiL | 008 | 0007057 | 46 | 0006742 | -54 | 000545 | 0004588 | -16 | 000348 | 36 | 2720312 | 2556017 | -6 | 2543511 | 6 | 039633 | 0232956 | -41 | 0335661 | -15
t2 | 00200 | go1a712 | 37 | 0011631 | -42 | 0010402 | 0010036 | -4 | 0003884 | -63 | 2987478 | 2795777 | -6 | 2773075 | -7 | 0570699 | 0300865 | -47 | 0334399 | -41
T3 | 0020 1 0013143 | 47 | 0013583 | 45 | 0013267 | 0015286 | 15 | 0007115 | -46 | 3637198 | 3125796 | -14 | 2715516 | -25 | 0.906088 | 0622866 | -31 | 0.689833 | 24
tHa | 0T 1 0027707 | 0 | 0082729 | 18 | 0024933 | 0.008366 | -64 | 0008M1 | -64 | 5372496 | 4190774 | -22 | 3666052 | 32 | 1521667 | 0830872 | -45 | 0.891284 | -41
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Table A-5. Continued

NO° HCP coy’ co’
. a Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg

Bin Avg Avg Avg Avg

std. dev. j‘:/: diff. ::/'. diff. | std. dev. j‘e‘\’/'. diff. j‘e‘?/'. diff. | std. dev. j‘e‘\j/'. diff. j:/'. diff. | std. dev. j:/'. diff. j:/'. diff.
1201 0.001353 0.001435 6 0.001873 38 0.002465 0.003384 37 0.001711 -31 0.752061 0.664471 -12 0.774477 3 0.087575 0.099099 13 0.049412 -44
1202 0.001423 0.001521 7 0.002003 41 0.001773 0.004194 137 0.002062 16 0.729907 0.668691 -8 0.77674 6 0.076393 0.141591 85 0.068659 -10
1203 0.001253 0.001896 51 0.002485 98 0.001936 0.003079 59 0.000929 -52 0.783702 0.697239 -11 0.855793 9 0.069682 0.078986 13 0.023375 -66
1204 0.002278 0.001665 -27 0.002125 -7 0.002461 0.003694 50 0.001778 -28 1.080752 0.677613 -37 0.628547 -42 0.080298 0.104564 30 0.04997 -38
1205 0.003336 0.002119 -36 0.002614 -22 0.003597 0.003467 -4 0.001681 -53 1.206617 0.794739 -34 0.714965 -41 0.138754 0.147007 6 0.054372 -61
1206 0.0044 0.002279 -48 0.002609 -41 0.002765 0.003178 15 0.001488 -46 1.78582 1.112786 -38 0.921626 -48 0.113237 0.093205 -18 0.042388 -63
1207 0.005525 0.001954 -65 0.002196 -60 0.002781 0.003305 19 0.001768 -36 2.306199 1.366 -41 1.220852 -47 0.16598 0.113099 -32 0.061202 -63
1208 0.008133 0.002694 -67 0.002807 -65 0.00722 0.003196 -56 0.001831 -75 2.635432 1.781243 -32 1.570403 -40 0.286122 0.111506 -61 0.090063 -69
1209 0.014025 0.005225 -63 0.006173 -56 0.004432 0.003916 -12 0.001976 -55 2.505814 2.228266 -11 1.895366 -24 0.410763 0.197293 -52 0.188263 -54
1210 0.014451 0.006155 -57 0.007053 -51 0.009088 0.005182 -43 0.003244 -64 2.799147 2.633155 -6 2.432006 -13 0.474955 0.196622 -59 0.166781 -65
1211 0.024503 0.014531 -41 0.017887 -27 0.006989 0.006375 -9 0.005167 -26 3.381765 3.876705 15 3.990195 18 0.933668 0.326539 -65 0.370172 -60
1212 0.023031 0.014183 -38 0.014183 -38 0.011665 0.006219 -47 0.006219 -47 2.530211 1.692154 -33 1.692154 -33 1.445647 0.856243 -41 0.856243 -41
1213 0.035852 0.020699 -42 0.020699 -42 0.009166 0.005278 -42 0.005278 -42 1.94742 1.40999 -28 1.40999 -28 1.100803 0.76091 -31 0.76091 -31
1214 0.037826 0.066474 76 0.066474 76 0.007689 0.004986 -35 0.004986 -35 2.208716 1.110591 -50 1.110591 -50 1.17728 0.932473 -21 0.932473 -21
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Table A-5. Continued

NO° HC® coy’ co’
. a Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg Time- Trip-Avg Vehicle-Avg
Bin Avg Avg Avg Avg
std. dev. j‘:/: diff. 3‘; diff. | std. dev. j‘e‘\’/'. diff. j‘e‘?/'. diff. | std. dev. j‘:/'. diff. j‘:/'. diff. | std. dev. j‘:/'. diff. j:/'. diff.
2101 0.002291 0.001038 -55 0.001092 -52 0.002249 0.001355 -40 0.000609 -73 1.109149 0.522517 -53 0.492078 -56 0.04711 0.017075 -64 0.008651 -82
2102 0.00257 0.001248 -51 0.001228 -52 0.002282 0.001089 -52 0.000673 -71 1.114641 0.653819 -41 0.596964 -46 0.037055 0.017076 -54 0.007536 -80
2103 0.001682 0.001174 -30 0.001481 -12 0.003115 0.001064 -66 0.000707 -77 0.713377 0.508459 -29 0.588173 -18 0.028625 0.011217 -61 0.011063 -61
2104 0.003339 0.00162 -51 0.001267 -62 0.002869 0.001942 -32 0.000965 -66 1.171887 0.711085 -39 0.587889 -50 0.05007 0.026471 -47 0.013628 -73
2105 0.004665 0.002149 -54 0.001593 -66 0.002939 0.00126 -57 0.000973 -67 1.288537 0.823675 -36 0.613453 -52 0.066924 0.031311 -53 0.012323 -82
2106 0.006577 0.002846 -57 0.002235 -66 0.003766 0.00141 -63 0.001123 -70 1.360129 0.737997 -46 0.56076 -59 0.082777 0.021256 -74 0.014604 -82
2107 0.008025 0.003665 -54 0.002943 -63 0.004028 0.001526 -62 0.001221 -70 1.498808 0.809143 -46 0.675402 -55 0.08088 0.023906 -70 0.022786 -72
2108 0.009009 0.005018 -44 0.003925 -56 0.003551 0.001595 -55 0.001195 -66 1.644394 0.802907 -51 0.725539 -56 0.101806 0.029478 -71 0.028732 -72
2109 0.01072 0.005428 -49 0.005163 -52 0.0052 0.001935 -63 0.001437 -72 1.811788 1.301192 -28 1.036041 -43 0.146791 0.040071 -73 0.042312 -71
2110 0.013533 0.008557 -37 0.006739 -50 0.004841 0.002246 -54 0.001466 -70 1.959334 1.247208 -36 1.169198 -40 0.208775 0.055964 -73 0.061325 -71
2111 0.016326 0.010608 -35 0.008615 -47 0.006874 0.002737 -60 0.002002 -71 2.303041 2.134836 -7 1.86914 -19 0.331085 0.112855 -66 0.128683 -61
2112 0.016636 0.009201 -45 0.009319 -44 0.007075 0.004083 -42 0.004147 -41 2.454817 2.221742 -9 2.195417 -11 0.664957 0.508908 -23 0.587978 -12
2113 0.018636 0.009346 -50 0.008606 -54 0.008143 0.005669 -30 0.004974 -39 3.00003 2.826129 -6 2.735825 -9 0.917957 0.906304 -1 1.037041 13
2114 0.018182 0.012218 -33 0.008621 -53 0.009979 0.012121 21 0.009851 -1 3.192905 3.65873 15 3.427465 7 1.255385 1.425734 14 1.612373 28
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Table A-5. Continued

NO° HCP coy co’

Bind TAT;L Trip-Avg Vehicle-Avg TATS Trip-Avg Vehicle-Avg TATS Trip-Avg Vehicle-Avg TATSL Trip-Avg Vehicle-Avg

std. dev. j‘:/: diff. ::/'. diff. | std. dev. j‘e‘\’/'. diff. j‘e‘?/'. diff. | std. dev. j‘e‘\j/'. diff. j:/'. diff. | std. dev. j:/'. diff. j:/'. diff.
o001 0.002025 0.000981 -52 0.000666 -67 0.005724 0.001843 -68 0.001068 -81 0.613904 0.273568 -55 0.263742 -57 0.114323 0.041109 -64 0.018576 -84
2200 0.001373 0.001018 -26 0.000437 -68 0.001315 0.001012 -23 0.000366 -72 0.675646 0.401726 -41 0.118576 -82 0.076183 0.044768 -41 0.007651 -90
2003 0.001812 0.000953 -47 0.000498 -73 0.002487 0.000827 -67 0.000309 -88 0.662243 0.237542 -64 0.22642 -66 0.08347 0.02829 -66 0.005443 -93
o004 0.004017 0.004185 4 0.003048 -24 0.000901 0.001069 19 0.000361 -60 0.7346 0.861998 17 0.345979 -53 0.062257 0.052883 -15 0.009072 -85
2205 0.008341 0.00692 -17 0.007591 -9 0.004297 0.002034 -53 0.00079 -82 0.88572 0.871532 -2 0.460997 -48 0.069947 0.062257 -11 0.02374 -66
2206 0.011656 0.009697 -17 0.0106 -9 0.002485 0.001831 -26 0.001041 -58 1.082677 0.935579 -14 0.745519 -31 0.120335 0.071032 -41 0.040804 -66
o207 0.01327 0.012669 -5 0.013467 1 0.004035 0.002652 -34 0.001958 -51 1.347016 1.10976 -18 1.145355 -15 0.196119 0.092674 -53 0.073024 -63
2208 0.017788 0.01643 -8 0.017134 -4 0.011091 0.00444 -60 0.004399 -60 1.439746 1.04263 -28 1.20379 -16 0.429698 0.191461 -55 0.175101 -59
2900 0.019972 0.020016 0 0.019755 -1 0.00739 0.003756 -49 0.003978 -46 1.495146 1.094696 -27 1.235369 -17 0.329428 0.119911 -64 0.11539%4 -65
2210 0.026059 0.023848 -8 0.02638 1 0.009476 0.004503 -52 0.004976 -47 1.831227 0.851895 -53 1.134458 -38 0.651197 0.220715 -66 0.250122 -62
o011 0.032955 0.033371 1 0.032509 -1 0.010611 0.007382 -30 0.006424 -39 2.135363 1.230785 -42 1.433405 -33 0.706309 0.266176 -62 0.297055 -58
o012 0.04661 0.04875 5 0.047183 1 0.016814 0.012329 -27 0.012946 -23 1.624249 1.219954 -25 0.913632 -44 1.294249 0.671993 -48 0.717117 -45
13 0.049311 0.048572 -1 0.048572 -1 0.017884 0.013392 -25 0.013392 -25 2.386484 1.472577 -38 1.472577 -38 1.427208 0.894934 -37 0.894934 -37
o014 0.057202 0.051111 -11 0.051111 -11 0.032672 0.026775 -18 0.026775 -18 2.102866 1.50871 -28 1.50871 -28 2.051322 1.561656 -24 1.561656 -24

#First two digit of VSP Bins: 11: odometer < 50,000 miles and engine size < 3.5 liter; 12: odometer < 50,000 miles and engine size > 3.5 liter; 21: odometer > 50,000 miles and engine size < 3.5 liter; 22:
odometer > 50,000 miles and engine size > 3.5 liter.
® Unit of standard deviation: g/sec; Unit of diff.: %.
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